Brigham Young University
 BYU ScholarsArchive

Oat SNP Marker Discovery and Mapping Based on 454 Pyrosequencing of Genome-Reduced Avena magna Murphy et Terrell

Rachel Rebecca Redman
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Animal Sciences Commons

BYU ScholarsArchive Citation

Redman, Rachel Rebecca, "Oat SNP Marker Discovery and Mapping Based on 454 Pyrosequencing of Genome-Reduced Avena magna Murphy et Terrell" (2011). Theses and Dissertations. 3068.
https://scholarsarchive.byu.edu/etd/3068

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Rachel R Redman

A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of

Master of Science

Eric N Jellen, Chair
Peter J Maughan
Bradley Geary
Eric W Jackson

Department of Plant and Wildlife Sciences
Brigham Young University
August 2011

Copyright © 2011 Rachel Redman

All Rights Reserved

ABSTRACT
 Oat SNP Marker Discovery and Mapping Based on 454 Pyrosequencing of Genome-Reduced Avena magna Murphy et Terrell

Rachel R. Redman
Department of Plant and Wildlife Sciences, BYU
Master of Science

The size and complexity of the oat genomes (Avena L., $x=7$) have made genetic studies, including the discovery of molecular markers, difficult. Recent attention to these species has resulted in the development of many DArT -based markers in the tetraploid A. magna Murphy et Terrill ($2 n=28$, CCDD genomes), along with numerous RFLP's, SSR's, DArT's, and EST-based SNPs in hexaploid A. sativa L. $(2 n=42$, AACCDD). Here we report the first SNP markers for tetraploid oat based on genome reduction and high-throughput pyrosequencing in two inbred lines of A. magna: A-169 (wild) and Ba 13-13 (domesticated). Initially, the genomes were reduced using restriction digests with EcoRI and BfaI and sequenced to produce 706,426 reads for both genotypes that were subsequently assembled into 57,048 contigs with an average read length of 345 bp . Comparisons of the contigs between the two lines resulted in the detection of 31,304 in silico SNPs. High Resolution Melt (HRM) and KASPar assays were used to validate 1,108 of these in silico SNPs across a panel of diploid, tetraploid, and hexaploid oats. Of the assays, 119 were validated using HRM and 384 using KASPar genotyping in the Fluidigm EP1 system. Both sets of assays were then mapped on a population of $117 \mathrm{~F}_{2: 8}$ recombinant inbred lines (RILs) developed from the A-169 x Ba 13-13 cross. A map of the A. magna genome was then constructed. The markers and map provide a new set of genomic tools for tetraploid and hexaploid oat breeding and allow for tracking of genes controlling traits of economic importance and other interesting genes through the evolution of Avena.

Keywords: SNP, pyrosequencing, Bio-Rad, Fluidigm, Avena, oat, genetic map, genome reduction

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to all those who assisted me in this project. I especially thank my advisor Dr. Rick Jellen for his guidance, assistance, encouragement, and patience over the past two years. I thank Dr. Eric Jackson, Dr. Jeff Maughan, and Dr. Brad Geary for all the wise input they offered throughout this project. Deep appreciation to Dr. Rebekah Oliver for her tireless assistance. I would also like to thank all of the students who assisted me with field, lab and bioinformatic work, with particular gratitude to Dinesh Adhikary, Victoria McKay, Mike Bond, Robert Byers and Scott Smith. I want to thank my family for their support and encouragement. Finally, I would like to thank the Brigham Young University Plant and Wildlife Sciences Department, the National Science Foundation, the USDA Agricultural Research Service in Aberdeen, ID, General Mills Inc., and the North American Millers Association for the resources and funding they provided.

TABLE OF CONTENTS

TITLE PAGE i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
LIST OF TABLES ix
CHAPTER 1: SNP MARKER DEVELOPMENT VIA GENOME COMPLEXITY
REDUCTION AND 454 PYROSEQUENCING 1
INTRODUCTION 2
MATERIALS AND METHODS 6
Plant Materials 6
DNA Extraction 6
Genome Reduction 7
454 Pyrosequencing, Assembly, and SNP Detection 8
High Resolution Melt 8
False Discovery Validation 9
RESULTS AND DISCUSSION 11
Conclusion 12
CHAPTER 2: SINGLE NUCLEOTIDE POLYMORHISM DEVELOPMENT. 14
AND GENETIC MAPPING IN TETRAPLOID AVENA MAGNA 14
INTRODUCTION 15
MATERIALS AND METHODS 20
Plant Materials 20
SNP Primer Development 20
HRM and KASPar Genotyping 21
SNP Diversity Data Analysis 22
Map Construction 23
Diversity Panel and Assay Validation 23
RESULTS AND DISCUSSION 24
SNP Assay Validation. 24
Linkage Map Construction 25
Avena Diversity Validation Panel 27
Tetraploid Diversity Panel 28
CHAPTER 3: LITERATURE REVIEW 31
INTRODUCTION 32
PLANT BREEDING 35
HISTORY OF MOLECULAR MAPPING 37
EFFECTS OF MAPPING ON PLANT BREEDING 40
REFERENCES 42
TABLES 50
FIGURES 56
SUPPLEMENTAL DATA 74
LIST OF TABLES 50
Table 1. Newbler Assembler results 50
Table 2. SNP markers identified by SNP Finder. Number of SNPs found and coverage. True SNP results are reported for strict parameters. 51
Table 3. A list of 16 Avena diversity lines for SNP assay validation 52
Table 4. The list of Avena genotypes used for the tetraploid-SNP diversity analysis.53
Table 5. Marker distribution and lengths of linkage groups 55
LIST OF FIGURES 56
Figure 1. Alternative strategies for developing molecular genetic markers in oat.

\qquad 56
Figure 2. Frequency of pyrosequencing read lengths 57
Figure 3. SNP detection and coverage results. 58
Figure 4. Putative gene ontology (GO) pie charts for the pool of GR-RSC DNAs from two A. magna lines, as determined by BLAST2Go 60
Figure 5. Pie chart depicting SNP classification results from the GR-RSC treated A
magna DNAs 61
Figure 6. Bio-Rad Precision Melt analysis 62
Figure 7. Fluidigm analysis 63
Figure 8. Platform Dependent Marker Distribution 64
Figure 9. Genetic Distances for Linkage Groups 65
Figure 10. Genetic map of A. magna A-169 x Ba 13-13 RIL population, including
GR-RSC SNP markers 67
Figure 11. 302 markers were mapped across 16 linkage 69
Figure 12. Heat Plot 70
Figure 13. Linkage Groups. 71
Figure 14. Sixteen Diversity Line Validation Panel Dendrogram 72
Figure 15. Tetraploid Diversity Dendrogram 73
LIST OF SUPPLEMENTAL DATA 74
Supplemental Table 1. List of 330 PCR primers used for High Resolution Melt
analysis 74
Supplemental Table 2. List of 768 SNP primer pairs used in KASPar assays 86

LIST OF TABLES

Table 1. Newbler Assembler results .. 50
Table 2. SNP markers identified by SNP Finder. ... 51

INTRODUCTION

Cultivated oat (Avena sativa L. and A. byzantina C. Koch, $2 \mathrm{n}=6 \mathrm{x}=42$, AACCDD genomes) was the world's seventh most important cereal crop with 11.3 million harvested acres in 2008 (UN-FAO, faostat.fao.org). Although oat acreage worldwide has been declining over the past 100 years with the demise of the agrarian horse culture, the nutritional benefits of common oat are beginning to make oat a desired component of the human diet. In turn, the demand for high-quality commercial oat is increasing primarily due to its whole grain soluble fiber content. The ability of beta glucan to lower serum LDL cholesterol has been medically documented and led the Food and Drug Administration to allow the labeling of whole-oat products as heart healthy beginning in 1998 (Cervantes-Martinez 2001). Additionally, oat has a favorable fatty acid composition and higher and more complete protein composition than other cereals (Holland 2001). Oat is also used in some brands of dog and chicken feed (Magness 1973).

Avena magna $(2 n=4 x=28, \mathrm{CCDD})$ is a weedy tetraploid species native to heavy clay soils in agricultural areas of northern Morocco. The species is of increasing interest to oat breeders due to its high protein content (up to 25% of the groat mass), large caryopses, and exceptional crown rust and powdery mildew resistance (Ladizinsky 1995; Ladizinsky 2000). This wild oat species has potential to improve hexaploid oat through gene transfer because it appears to be closely related to A. insularis, the tetraploid ancestor of hexaploid oat (Ladizinsky 1998; Jellen and Ladizinsky 2000). In order to facilitate genetic studies in A. magna, a recombinant inbred line (RIL) population derived from a cross between two A. magna genotypes, Ba 13-13 and $\mathrm{A}-169$, was developed. The parental line Ba 13-13 is a phenotypically
uniform, fertile, and cytogenetically stable oat derived from dual-backcross hybridization with hexaploid A. sativa, followed by repeated selfing, to transfer domestication syndrome genes (non-shattering, yellow lemma, glabrous, reduced awns) from A. sativa into A. magna (Ladizinsky 1995).

Recently, Oliver et al. (2011) reported the development of the first genetic map for A. magna using the A-169 x Ba 13-13 RIL population. Their map was based on EST-SNP and DArT markers. Since these new markers were derived either from cDNAs (EST-SNPs) or PstI-digested genomic sequence clones (DArTs), they are expected to be biased for coding regions, leaving gaps on the chromosomes of the genetic map. The development of genomic-based markers would serve to fill these gaps and extend the existing linkage groups.

Since Avena chromosomes - and therefore, the Avena genome - are massive (comparable in size to those of the Triticeae grasses), a stringent genome reduction- reduced complexity sequencing (GR-RSC) protocol might be useful to identify genomic SNPs for a fraction of the cost of alternative methods like whole-genome sequencing (Figure 1). Maughan et al. (2009) developed a genomic reduction approach based on restriction digest and restriction-site conservation to dramatically reduce the size and complexity of four Amaranthus genomes and produce the first SNP-based linkage map in this genus. Large genomes can theoretically be reduced by $>90 \%$ using this restriction site conservation and biotin-streptavidin paramagnetic bead separation method. Multiplex identifier (MID)-barcodes were then attached to the target genomes. These barcodes allowed for pooling of the DNA samples followed by parallel, high-throughput DNA sequence analysis in matching genomic contigs from the four genotypes
to identify single-base differences. Assays for these interparental SNPs were then designed without further genotyping.

Single-nucleotide polymorphisms were chosen as the marker of interest as they demonstrate lower mutation rates than tandem repeats (Xu et al. 2005). They are also the most frequent form of DNA sequence variation in eukaryotic genome sequences (Garg et al. 1999), allowing for dense genetic mapping. This type of high density, SNP-based linkage map affords the potential of identifying causal mutations (Rafalski 2002). Genome reduction and 454-pyrosequencing was used for SNP discovery on cattle (Van Tassell et al. 2008); however, due to pooled sampling of the restriction fragments, the individual alleles could not be assigned without further genotyping. Maize SNP discovery encountered similar problems (Barbazuk et al. 2007).

Putative SNPs generated from sequencing must be validated and translated into working PCR-based assays. A powerful technique called high resolution melting (HRM) was developed in 2003 and is capable of detecting polymorphisms, mutations, deletions, insertions or epigenetic differences in double-stranded DNA (Reed 2007). The method uses high data-density acquisition, and detects small sequence differences in PCR fragments, simply by direct melting and reannealing of the double helix. Melting curves can thus be used for mutation scanning, sequence matching, and mutliplex genotyping - analyses that traditionally required processing of PCR products by electrophoresis or other non-homogeneous means (Gundry 2003).

Here we report the use of GR-RSC to discover SNPs in our tetraploid oat mapping parents, eliminating the need for additional genotyping and providing novel genomic SNP markers to further populate the A-169 x Ba 13-13 linkage map. These genomic-based SNPs were further validated through polymorphism screening using a panel of tetraploid and hexaploid mapping-population parents. In addition, we compared the value of HRM versus KASPar/Fluidigm SNP assay platforms.

MATERIALS AND METHODS

Plant Materials

Deoxyribonucleic acid from A. magna lines Ba 13-13 and A-169 were used for genome reduction, sequencing, SNP identification and assay validation. Strain Ba 13-13 is a domesticated, tetraploid A. magna line originating in Israel that is morphologically similar to common hexaploid oat. The line originated from a cross between hexaploid A. sativa (cv. 'Ogle', '86-4189', '86-4467' or '86-5698') and a wild tetraploid A. magna line, A-169. The pentaploid progeny from this cross were then backcrossed twice with a wild tetraploid parent, with selection in the offspring for individuals that were fertile, tetraploid, and carried the domestication traits (Ladizinsky 1995). An F_{2} population was developed by crossing Ba 13-13 by A-169 at BYU (E. Jellen, personal communication). A single-seed descent approach was used to advance the population to the F_{8} generation at BYU and USDA-ARS (Aberdeen, ID), resulting in 117 recombinant inbred lines (RILs). Ploidy levels were cytologically inspected at both the F_{2} and F_{8} stages. Plants were grown in a $22-30^{\circ} \mathrm{C}$ greenhouse with a 16 hour photoperiod.

DNA Extraction

Genomic DNA was extracted as described in Maughan et al. (2009). Approximately 4 cm of young leaf tissue from each sample was placed in individual 2 ml tubes and ground into powder by submerging the tubes in the liquid N_{2} and emaceration using a plastic tube pestle. A cetyltrimethylammonium bromide (CTAB) extraction procedure was performed (Kidwell and Osborn 1992). In brief, $600 \mu 1$ of extraction buffer [0.35 M sorbitol, $0.3 \mathrm{M} \mathrm{TrisHCl} \mathrm{pH} 8.0,5$
mM EDTA pH 8.0, $2 \mathrm{M} \mathrm{NaCl}, 2 \%$ CTAB, 5% (w/v) N-lauroylsarcosine, 2% (w/v)
Polyvinylpyrrolidone (PVP40, K29-32), and 0.5 \% (w/v) sodium metabisulfite] was added and mixed with the powder. The solution was incubated for 60 min at $65^{\circ} \mathrm{C}$ then mixed with $600 \mu \mathrm{l}$ chloroform. After mixing, the solution was centrifuged at $10,000 g$ for 20 min and the aqueous phase was transferred to a new 2 mL tube. Chilled isopropanol (600 ul) was added to the aqueous layer and the solution was mixed by inversion to precipitate the DNA. The samples were centrifuged at $10,000 \mathrm{~g}$ for 30 min . and supernatant was discarded. The DNA pellet was rinsed twice with 70% ethanol, dried, and then suspended in 1xTE buffer and quantified using the NanoDrop ND 1000 Spectrophotometer (NanoDrop Technologies, Montchanin, DE, USA).

Genome Reduction

We reduced the genomes of Ba 13-13 and $\mathrm{A}-169$ using the techniques of Maughan et al. (2009). Genomic DNA was subjected to a double digestion with four- and six-base specific restriction endonucleases BfaI and EcoRI, respectively. Double stranded adapters labeled with a 5'-biotin molecule were ligated to the 6-base recognition sites, while the four-base recognition sites were ligated to unlabeled adapters. Streptavidin paramagnetic beads were used to separate the four-base unlabeled fragments from the labeled six-base fragments. The MID barcodes were incorporated onto the remaining DNA fragments via complementary PCR primers. A PCR process allowed for the annealing of these barcodes into the remaining amplified DNA fragments. Parental genotypes Ba 13-13 and A-169 were labeled with their own unique 10-base MID sequence to allow for post-sequencing bioinformatic separation. Prepared samples were then pooled and electrophoresed to select for the 500-650 base pair fragments, which were
excised from the gel.

454 Pyrosequencing, Assembly, and SNP Detection

The 454 pyrosequencing protocol was performed as described in Maughan et al. (2009).
A single micro-bead sequencing run was performed as a service at the Brigham Young University DNA Sequencing Center (DNASC) using a Roche-454 GS FLX instrument and Titanium reagents (Roche, Branford, CT, USA). The DNA from lines Ba 13-13 and A-169 were uniquely labeled with separate MID barcodes. After sequencing, each parent was separated into respective MID- barcode pools bioinformatically using CLCBio Workbench (v. 3.5.1;

Katrinebjerg, Aarhus N, Denmark). Contigs were assembled for each pool de novo. Roche Newbler assembler (v. 2.0.00; Branford, CT, USA) assembled these contigs following the parameters of minimum overlap length of 50 bp , with minimum overlap identity at 95%. Newbler's gsAssembler allowed for de novo assembly of reads into contigs for each parental line. A custom PerlScript (SNP_Finder 3.0; Maughan et al. 2009) created at Brigham Young University was used to identify SNPs between the parental reads within large contigs (>200 bp). Putative SNPs were identified based on the following criteria: 1) at least 10x read coverage; 2) MID-barcode alleles were 90% identical for each parent; and 3) 40% minimum allele frequency.

High Resolution Melt

Genotyping was performed by High Resolution Melt (HRM) analysis as described in Oliver et al. (2011), using a Bio-Rad C1000 thermal cycler with a CFX96 optics module. Bio-Rad's 1x SsoFast EvaGreen Supermix was mixed with 55 ng genomic DNA in each
reaction. For each reaction $0.5 \mu \mathrm{M}$ forward and reverse primers (Supplemental Table 1) were used in a $12.5 \mu \mathrm{l}$ reaction volume. The thermocycling protocol used was as follows: 1) denaturation at $98^{\circ} \mathrm{C}$ for 2 min ; 2) 46 cycles of $98^{\circ} \mathrm{C}$ for 2 sec and $55^{\circ} \mathrm{C}$ for $\left.5 \mathrm{sec}, 3\right)$ melt gradient from $65^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$, increasing in $0.2^{\circ} \mathrm{C}$ increments every 10 sec . Melt curves were analyzed using Bio-Rad Precision Melt Analysis Software Version 1.0.534.0511. The differences in relative fluorescence units as a function of melting temperatures allowed for differentiation of primary polymorphic alleles as well as insertions, deletions and null alleles.

False Discovery Validation

Thirteen primers (contig5030, contig5075, contig6122, contig6183, contig6404, contig6465, contig6923, contig7003, contig7325, contig7662, contig7937, contig8269, contig11641) were randomly chosen from the robust HRM reactions to validate SNPs via Sanger sequencing. These primers were used to PCR-amplify the genomic regions of Ba 13-13 and A-169. Qiagen HotStart Taq Master Mix (Qiagen, Valencia, California, USA) was used for the PCR amplification. The thermocycling conditions were as follows: $95^{\circ} \mathrm{C}$ for 15 min followed by 34 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 1 min . The final $10-\mathrm{min}$ extension step was done at $72^{\circ} \mathrm{C}$. PCR products were visualized using 1.2% agarose gel. The amplified PCR products were then extracted from the gel, and purified using a QIAquick PCR Purification Kit with QIAquick spin columns in a microcentrifuge (Qiagen, Valencia, CA, USA).

PCR-purified DNA was transformed into the $\mathrm{pGEM}^{\circledR}$ - T-Easy Vector system using JM109 competent cells, following the manufacturer's protocol (Promega, Madison, WI, USA). The plasmid containing the DNA insert using the GenElute plasmid Miniprep Kit (Sigma, St.

Louis, MO, USA) followed by enzymatic cleavage. Plasmid DNA was then quantified using Nanodrop (ND 1000 Spectrophotometer, Nanodrop Technologies Inc., Montchanin, DE, USA) and 300-400 ng of it was amplified using Big Dye cycle sequencing and T3 forward (5'AATTAACCCTCACTAAAGGGA 3') and T7 reverse (5’TAATACGACTCACTATAGGG 3') primers. The sequencing reaction profile included 25 cycles of $96^{\circ} \mathrm{C}$ for 10 sec followed by $50^{\circ} \mathrm{C}$ for 6 sec , and $60^{\circ} \mathrm{C}$ for 4 min . Amplified PCR product was purified with Sephadex G-50 protocol (GE Healthcare) and sequenced with an ABI3730xl DNA Analyzer (Applied Biosystems, Foster City, California). Sequenced vectors were screened using the NCBI VecScreen. Sequences which were conserved with the genomic regions of grass families were included in the studies.

Sequences were aligned using MEGA 4.1 software (Tamura et al. 2007).

RESULTS AND DISCUSSION

Genome reduction with methylation-sensitive and -insensitive enzymes allows the interrogation of areas of the chromosome neglected by EST-based markers. Maughan et al. (2009) reported that digestion with the BfaI-EcoRI restriction enzyme cocktail produced a continuous smear with Amaranthus DNA following electrophoresis. Although the restriction-digested A. magna DNAs in our study likewise presented a continuous smear following electrophoresis, post GR-RSC in our case resulted in an unusually large fraction of sequences ranging from $200-400 \mathrm{bps}$ - considerably smaller than the $500-650 \mathrm{bp}$ fragments initially excised from the reduction gel. We attributed this disparity to sub-optimal 454 sequencing performance and/or inefficient size selection (Figure 2).

Table 1 presents the results of the GR-RCS procedure with A. magna DNA. Pyrosequencing returned a total of 706,426 reads. These were then assembled into 57,048 large contigs (> 300 bp), producing 27,200,520 total bases of sequence. Average read length was 345 bp with most reads greater than 40x quality. The average read depth per contig (Figure 3) was 16x. Barcodes MID1 (A-169) and MID2 (Ba 13-13) were removed prior to sequence assembly using Newbler's de novo assembler. As expected, reads from A-169 and Ba 13-13 were found in almost equal proportions, specifically 47% and 53%, respectively (Table 1).

Sequence classifications (gene ontology), as determined using BLAST2Go, are presented in Figure 4. The presence of a diverse distribution of sequences in terms of molecular function, biological process and cellular components indicates that the pool of GR-RSC treated A. magna DNAs included a wide range of transcribed sequences (Figure 4). As expected, SNP composition
was predominantly in the form of C / T and A / G transitions (Figure 5).

SNP_Finder detected 31,304 total sequence variants, with most contigs containing only a single SNP and at an average 16X coverage at each SNP. SNP_Finder filtered these SNPs using strict parameters, resulting in 12,642 SNPs and 6,502 contigs containing true SNPs (Table 2). Of the 13 SNPs chosen for validation, only four verified the SNP-identified assembly from Newbler, while the remainder appeared to be amplified PCR products of orthologous and/or paralogous sequences-likely a result of the tetraploid nature of A. magna. This finding suggests that the relatedness of the two subgenomes may complicate the development of future SNP assays.

Conclusion

This paper emphasizes the development of rapid marker discovery in the oat genus Avena using the wild Moroccan tetraploid A. magna (Murphy 1968) as a source of new DNA sequence-based markers. Genetic marker discovery in tetraploid oat by single nucleotide polymorphisms (SNPs) should provide at least four major benefits for improvement of cultivated oat. First, it provides a new set of CCDD genome specific markers for application in cultivated hexaploid oat breeding assuming tetraploid markers are transferable to hexaploid oat. Second, it provides a basis for genetic map development in A. magna, and potentially also A. murphyi (Ladizinsky, 1995) and A. insularis Ladizinsky, all of which are potential genetic resources for exotic alleles to improve cultivated hexaploid oat. Third, the A. magna-derived SNPs may potentially be used to track the genetic heritage of genes controlling traits of economic importance and other chromosome segments of interest back through the evolutionary ancestors
of oat. Lastly, these markers may be used to create a SNP panel that can be used to screen global diversity in all Avena species. Species-specific SNPs may be detected and analyzed for evolutionary patterns and divergences when Avena species of diverse genome composition are screened.

CHAPTER 2: SINGLE NUCLEOTIDE POLYMORHISM DEVELOPMENT AND GENETIC MAPPING IN TETRAPLOID AVENA MAGNA

INTRODUCTION

Common cultivated oat, Avena sativa L. and A. byzantina C. Koch, have attracted very little attention until recently, despite being the world's fifth of sixth most significant cereal crop. Current research and industry support have uncovered and promoted a series of unique health benefits from regular oat consumption. One of the most valuable findings was the ability of oat soluble fiber (beta-glucans) to lower serum LDL cholesterol (Braaten et al. 1994). Dietary protein from plant sources has also been shown to have profound health benefits (Nutall et al. 1984; Wang et al. 2008). The good quantity and quality of oat seed protein, combined with high oil content, anti-itch properties, antioxidants, and soluble fiber all make oat an attractive commodity for various industries including breakfast cereals, agronomy, and cosmetology (Eggum et al. 1989). While other cereal crops have comparable protein content, oats have been shown to have higher levels of the limiting amino acid lysine (Young and Pellett 1994). The health benefits from oat are attracting more attention and therefore increasing protein content is a valuable objective (Jones et al. 1948).

While common oat has a diploid chromosome number of $2 n=6 x=42$ (AACCDD genome composition), A. magna Murphy et Terrell (syn. A. maroccana Gdgr) has $2 n=4 x=28$ (CCDD genomes). The latter species inhabits disturbed field sites on heavy alluvial clays in northern Morocco. While seed protein percent in common oat ranges to near 17\%, A. magna seed has been found to exceed 30% protein, making it a potentially valuable resource for improving common oat's protein content (Ladizinsky and Fainstein 1977). Besides high seed protein content, A.
magna carries other desirable qualities such as resistance to crown rust (Puccinia coronata f . sp. avenae) and powdery mildew (Erysiphe graminis; Ladizinsky 1995; Ohm and Shaner 1992).

Crosses between A. magna and A. sativa have been attempted for introgression purposes; however, hybrid progeny of such crosses are male-sterile pentaploids (Harlan et al. 1973; Ladizinsky 1995; Ladizinsky and Fainstein 1977; Thomas 1992). Pollination of these hybrids with either tetraploid or hexaploid pollen will rescue the sterility by converting it back to 4 x or 6 x , respectively, thus allowing traits of interest to be transferred in the process.

Ladizinsky (1995) took the novel approach of trying to transfer the 'domestication syndrome' traits from A. sativa to create a novel crop, A. magna subsp. domestica. He described the domestication syndrome in A. magna as being controlled by four loci: a partially dominant gene for large, geniculate awns (A); a dominant lemma color gene, with black being dominant to yellow $(L c)$; a dominant gene for pubescent versus glabrous lemma ($L p$); and a dominant gene for non-shattering spikelets (basal articulation, $B a$). One of the second-backcross A. magna lines having the domestication syndrome from A. sativa was named Ba 13-13 and was crossed with a wild A. magna line, A-169, to make an F_{2} mapping population (Jellen 2000). Oliver et al. (2011) advanced these lines to the F_{8} via single-seed descent to make a recombinant inbred line (RIL) mapping population and reported tight coupling linkage between the A (prominent awn) allele and a heterochromatic knob at the telomere of one of the C-genome chromosomes, with the $L p$ locus mapping to a different chromosome. This telomeric knob had previously been noted on apparently homologous chromosomes in A. magna, A. sativa, A. insularis Ladizinsky, and on chromosome 5C in the wild hexaploid A. sterilis L. (Jellen and Ladizinsky 2000; Jellen et al. 1993). Its
segregation in the Ba 13-13 x A-169 progenies was also verified in the F_{2} (Jellen 2000) and RIL populations (Oliver et al. 2011).

The creation of molecular genetic maps in cultivars and wild relatives of economically important allopolyploid crops like oat can provide powerful tools for marker-assisted selection (MAS), to evaluate breeding value of these genetic resources, and to resolve questions related to genome origins and evolution. Molecular markers that have been used for mapping in oat include sequence characterized amplified regions or SCARs (Chong et al. 2004; Orr and Molnar 2008); amplified fragment length polymorphisms or AFLPs (Jin et al. 2000; Yu and Wise 2000); restriction fragment length polymorphisms or RFLPs (O'Donoughue et al. 1995; Kremer et al. 2001); simple sequence repeats or SSRs (Li et al. 2002; Pal et al. 2002); diversity array technology or DArT markers (Tinker et al. 2009); and SNPs. (Groh et al. 2001).

The first genetic map created for tetraploid oat was an AFLP-based map in A. barbata, a weedy AABB-genome tetraploid (Gardner and Latta, 2006; Latta and Gardner 2009). Nineteen linkage groups were reported and 129 loci mapped. Oliver et al. (2011) reported the first complete linkage map of tetraploid oat in A. magna. This map was constructed of DArT markers, small numbers of SNPs and SSRs, domestication syndrome genes A and $L p$, and the telomeric 5CL knob (Jellen 2000). The Oliver et al. (2011) map is potentially biased toward genic regions because it was based on DArT markers derived from cloned, PstI-digested - and therefore, hypomethylated oat genomic fragments.

Single-nucleotide polymorphisms are potentially the most abundant, and generally the most informative, genetic markers for linkage mapping - short of mapping by sequencing. The two main problems with SNP markers are the initial requirement of DNA sequence data - which can be very expensive to generate - to identify the SNPs, and design of precise assays that can discriminate among homologous, paralogous, and orthologous SNPs. Paralogous SNPs can be an obstacle in species with large, highly duplicated genomes, like Avena. Orthologous SNPs can be especially problematic in allopolyploid species like A. magna (4x) and A. sativa (6x). Highly sensitive SNP assay methods like high-resolution melt-curve analysis (HRM) have proven useful in the mapping of selected SNPs in hexaploid oat populations (Oliver et al. 2011). Although HRM is capable of detecting point mutations, deletions, insertions or epigenetic differences in double stranded DNA (Wittner et al. 2003), it can prove time-intensive and costly, In contrast, other SNP assaying chemistries like TaqMan (Applied Biosystems, Foster City, CA, USA), KASPar (KBiosciences, Hoddesdon, UK), and Golden Gate (Illumina, San Diego, CA, USA) can be run on high-throughput platforms like Illumina's BeadXpress Reader or the Fluidigm 96.96 EP1 instrument (Fluidigm, South San Francisco, CA, USA).

Here we report the development of 436 new A. magna genomic SNPs derived from genome-reduced restriction site conservation (GR-RSC) methodology. These SNPs allowed for the refinement of linkage groups in the Oliver et al. map (2011) by filling in gaps and extending linkage groups. We compared two alternative methodologies for detecting these genomic SNPs in an F_{8} RIL-based mapping population: namely, high-resolution melting (HRM) analysis on a Bio-Rad instrument and KASPar assays detected on a Fluidigm 96.96 EP1 platform. This work
provides a genetic foundation for further domestication of the tetraploid oat A. magna and for the transfer of economically useful genes from this species to common hexaploid oats.

MATERIALS AND METHODS

Plant Materials

A total of 117 A. RILs were previously developed by crossing A. magna subsp. domestica var. Ba 13-13 with wild $\mathrm{A}-169$, then selfing the F_{2} plants to the F_{8} by single-seed descent to form the BAM population (Ladizinsky 1995; Oliver et al. 2011). Seed was provided by Dr. Eric Jackson (USDA-ARS, Aberdeen, ID, USA). Sixteen oat lines (Table 3) were selected for validation purposes while an additional 65 wild tetraploid lines and four hexaploid lines were selected to determine the level of diversity across the SNP loci (Table 4). These lines were provided by Dr. Rick Jellen at Brigham Young University and from the USDA-ARS germplasm bank at Aberdeen. All plants were grown in 4-inch square pots, in a greenhouse with an approximately $16-\mathrm{h}$ photoperiod and a daytime temperature ranging from $22-30^{\circ} \mathrm{C}$.

SNP Primer Development

A total of 1,208 previously identified GR-RSC SNPs were chosen for genotyping. RepeatMasker (v.3.2.9 Tritticae) database was used to eliminate sequences having significant homology to the Triticum cytoplasmic genomes. A primer design program, PrimerPicker (KBiosceinces 2009), processed the sequences using default parameters. Primers were then randomly selected and synthesized by Bioneer Inc. (Alameda, CA, USA).

HRM and KASPar Genotyping

Single-nucleotide polymorphism marker screening and genotyping was performed on two different platforms. Small-scale, HRM genotyping was performed using a Bio-Rad C1000 thermal cycler with a CFX96 optics module (Hercules, CA, USA) as previously described by Oliver et al. (2011), while large-scale genotyping of SNPs was performed using the Fluidigm (San Francisco, CA, USA) 96.96 Dynamic Array IFC's on the EP1 System. Protocols recommended by KBioscience and Fluidigm were followed.

In brief, Bio-Rad's 1x SsoFast EvaGreen Supermix was mixed with 55 ng genomic DNA in each reaction. In addition to the genomic DNA, $0.5 \mu \mathrm{M}$ forward and reverse primers were used in a $12.5 \mu \mathrm{l}$ reaction volume. The thermocycler protocol used was as follows: 1) denaturation at $98^{\circ} \mathrm{C}$ for 2 min ; 2) 46 cycles of $98^{\circ} \mathrm{C}$ for 2 sec and $55^{\circ} \mathrm{C}$ for 5 sec ; 3) melt gradient from $65^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$, increasing in $0.2^{\circ} \mathrm{C}$ increments every 10 sec . Melt curves were analyzed using Bio-Rad Precision Melt Analysis Software Version 1.0.534.0511. The differences in relative fluorescence units as a function of melting temperatures allowed for genotyping.

The KASPar (KBioscience Ltd., Hoddesdon, UK) assay was used to validate a portion of the identified SNPs. Assays were designed for SNPs where coverage was between 12-20X and SNP flanking sequences were at least 100 bp long. All assay primer sets were designed using PrimerPicker using default parameters.

The KASPar reactions produce fluorescence intensities at two unique wavelengths, each corresponding to the presence of a an alternate nucleotide at the SNP. Fluorescence intensities
were measured with the Fluidigm EP1 reader and plotted two-dimensionally. Genotype calls based on EP1 measurements were made using the Fluidigm SNP Genotyping Analysis (Fluidigm 2011) program. All calls were manually checked for accuracy and ambiguous data points were left uncalled. The Fluidigm assay is based on KASPar genotyping chemistry, but using a nano-scale reaction volume. Each 96.96 Fluidigm chip accommodates 96 primer pairs x 96 genotypes, producing a total of 9,216 genotypic data points at a cost of $\sim \$ 0.05 / \mathrm{dpt}$. Genetic maps based on KASPar genotyping data were constructed in JMP Genomics v. 5.1 (SAS, Cary, NC, USA) using a regression mapping algorithm.

SNP Diversity Data Analysis

Alleles for each segregating RIL in the Bio-Rad assays were scored based on the melting curve profile of the mapping parents. Different alleles melt at different temperatures and the Bio-Rad software colors these as green or red. Missing data, or those RILs that did not amplify, were colored black. The alleles were exported into a spreadsheet where the colors were then converted into 0 's and 1's for the biallelic data. A numerical value of 2 was assigned to designate missing data and were disregarded for mapping purposes. Fluidigm assays were scored and converted similarly, based on segregation of the parent's florescence. Both datasets were then converted into a binary matrix. Those reactions that had greater than 10% failure of RIL amplification were disregarded for both platforms.

Map Construction

Genotype calls for the 117 BAM RILs at each locus were determined automatically by the Fluidigm progarm and then verified via visual inspection upon comparison with the parental alleles. Using this information, preliminary mapping of linkage groups was performed in MapManager QTX v.1.1 (Rockefeller University, New York City, NY, USA). This framework map was constructed for consensus and reference using markers from the tetraploid map developed by Oliver et. al (2011). Further linkage analysis and map construction were performed using JMP Genomics v. 5.1. Multilocus ordering was determined using an algorithm based on the evolutionary optimization strategy (Mester et al. 2003; Mester et al. 2004), with maximum likelihood estimation to calculate pairwise recombination fractions (rf) for all marker pairs. Preliminary clustering and assignment of markers to a linkage group (LG) was evaluated at a rf = 0.05 threshold. Markers were then attached to the framework scaffold

Diversity Panel and Assay Validation

A panel of 16 oat lines representing various Avena genome combinations, including diploids and allopolyploids, was surveyed for SNP assay validation across the same 330 primers selected for the Bio-Rad analysis. Another 69 oat lines were selected for the tetraploid diversity analysis and assayed across the 768 primer sets selected for the Fluidigm EP1 analysis. The same platform protocols were used as described above. Each allele was scored as described above and converted to a binary matrix. The JMP Genomics v. 5.1 program was used to create a dendrogram via Neighbor-Joining analysis.

RESULTS AND DISCUSSION

SNP Assay Validation

A panel of 16 oat lines representing various Avena genome combinations, including diploids and allopolyploids, was surveyed for SNP assay validation across the same 330 primers selected for the Bio-Rad analysis. Another 69 oat lines were selected for the tetraploid diversity analysis and assayed across the 768 primer sets selected for the Fluidigm EP1 analysis. The same platform protocols were used as described above. Each allele was scored as described above and converted to a binary matrix. The JMP Genomics v. 5.1 program was used to create a dendrogram via Neighbor-Joining analysis.

For our purposes, any SNP with a >10\% amplification failure rate was considered incomplete for mapping and discarded. The 65.3% and 58.6% attrition rates for HRM and KASPar markers, respectively, can possibly be attributed to a number of factors. In the case of the KASPar assays on the Fluidigm platform, DNA template concentrations may have been sub-optimal, given the very large size, and duplication, of the A. magna genome. Poor DNA quality might also be an issue and interfere with both assay types, as other researchers have noted that high-quality oat DNA is unusually difficult to purify owing to its high polysaccharide content (E. Jellen, personal communication). The failure of large portions of several reactions to separate from the origin was probably indicative of poor amplification.

Figure 6 demonstrates a robust Bio-Rad assay. RILs that contained the allele from the Ba

13-13 parent were designated green. Alleles from the A-169 parent were labeled red. The differences in melting temperatures between the two alleles are visualized by a shift or space in the melt curves. Similarly, Figure 7 shows strong segregation of alleles for a KASPar assay. Alleles from one parent fluoresced red, while alleles from the other parent fluoresced green. The SNP may be visualized by individual clustering of the RILs. Figure 8 displays the markers run on the two platforms and their BAM genetic map distributions. Whereas markers assayed via KASPar chemistry on the Fluidigm system were randomly distributed along the length of all 16 linkage groups, the HRM-assayed SNPs showed some clustering. This was particularly true on linkage groups 14 and 15 . We cannot conceive of a rational explanation for this clustering effect with the HRM marker set.

Linkage Map Construction

Delineation of linkage groups, selection of framework markers, and resolution of marker order were performed using JMP Genomics mapping package, with algorithms based on marker order and incrementally-increasing recombination thresholds (Korol et al. 2009; Mester et al. 2004). Figure 9 illustrates a high degree of segregation distortion in the mapping data, with markers skewed toward the wild A-169 parent predominating on linkage groups 2, 4, 6, and 14 . In contrast, linkage groups 5,15 , and 16 were heavily skewed toward markers from domesticated Ba 13-13. Linkage group 1 was unique in having only minor segregation distortion. Interestingly, linkage group 9, which harbors the telomeric knob in A-169 and several domestication syndrome genes originally contributed to Ba 13-13 by A. sativa, showed evidence of A-169 marker
distortion at one end. Though the knob was not included as a marker for this map, cytological analysis of the F_{8} BAM RILs verified a $41: 59$ skewed ratio in favor of lines homozygous for the knob (R. Jellen, personal communication). This region is likely represented by the three markers having >50\% distortion toward A-169 at the "bottom" of the BA_09 column in Figure 9.

We expected 14 linkage groups for the 14 chromosomes in tetraploid oat. MapManager recovered 14 linkage groups (Figure 10). However, recombination analysis of each marker in JMPGenomics created 16 linkage groups (Figures 11 and 12). We believe increasing marker density would resolve the discrepancy between the two maps. The average distance of markers on the linkage groups was 12.1 cM , and ranged from 8.4 cM on linkage group 6 to just under 20 cM on linkage group 2. The largest gap on any linkage group was 35.8 cM on BAM 7 and the average across the linkage groups was 25.3 cM , suggesting the linkage groups were fairly sound (Table 5). In addition, the heat plot in Figure 12 detected a marker "island" at one end of linkage group 12 showing strong correlation with markers from linkage group 4 [red "lines" in the lower left (horizontal line) and upper right (vertical line) quadrants of the grid]. Whether this is indicative of synteny between these two linkage groups, the presence of a reciprocal translocation in these regions, or some other phenomenon remains to be seen.

An allotetraploid oat genome was recently resolved into 14 linkage groups for the first time with both C and D genome classes distinguished (Oliver et al. 2011). Figure 13 illustrates the importance of genomic-based markers to supplement existing maps created by EST-SNP and DArT markers. The red markers in Figure 13 clearly demonstrate how the GS-RSC SNPs from this study extended linkage groups and filled in "gaps", especially in gene-poor regions of the
chromosomes.

Avena Diversity Validation Panel

Thirty-two taxonomic entities have been distinguished among oats; however, there are discrepancies reported in the classification of some of the species (Jellen and Leggett 2006). Four basic genomes (A, B, C, and D) have been identified, with potentially a fifth genome (M) in A. macrostachya. Cytogenetic analysis, including C-banding, genomic and fluorescent in situ hybridization (GISH and FISH), provided the primary tools for identifying the individual chromosomes within the genus.

To further validate the accuracy of our results, we ran each of the 330 Bio-Rad assays across a selected diversity panel of 16 lines encompassing most known genome combinations and diversity within the genus Avena (Table 3). Melt curve analysis was scored based on differences in melting temperatures. Results were converted into binary matrix format and run through JMP Genomics v. 5.1 software to create a dendrogram (Figure 14). The resulting dendrogram formed four major clades. All six A. magna lines fell into the same clade, as expected. The diploid species formed two clades, with the CC genomes separating from the AA/DD genomes, which concurs with previous cytogenetic research (Jellen et al. 1994). The hexaploids, A. insularis, and A. murphyi constituted a fourth clade. The data confirmed what is most likely the correct relationship among the species. Avena insularis ($4 x, \mathrm{CCDD}$) is the progenitor of wild A. sterilis ($6 x$, AACCDD), which in turn is the progenitor of domesticated A.
sativa (Jellen and Ladizinsky 2000; Zhou et al. 1999). The results further indicate that A. murphyi (AACC or CCDD) might either be a progenitor of A. insularis, or both tetraploids participated in the hybridization event that gave rise to A. sterilis. This latter scenario would have to invoke a partial restituion mechanism and stabilization of the amphidiploid nucleus with only two copies of the C genome.

Tetraploid Diversity Panel

A panel of tetraploids was created to determine genetic diversity based on the SNP markers interrogated. The diversity panel consisted of 65 wild tetraploid lines and four domesticated hexaploid lines (Table 4), representing seven oat species: A. agadiriana (AAAA or $\mathrm{AABB})$; A. barbata (AABB); A. magna (CCDD); A. murphyi (AACC or CCDD); A. sativa (AACCDD); A. sterilis (AACCDD); and A. vaviloviana (AABB). A total of 318 SNP markers (636 alleles) were polymorphic on the Fluidigm EP1 platform. These polymorphisms created clear genotypic clusters for scoring.

A dendrogram created from biallelic scoring of these markers (Figure 15) produced six distinct clades. As expected, the majority of the A. magna accessions grouped together in two clades (red and green branch lines). Closely related in the adjoining clade was the A. murphyi group (blue branch lines). This supports the cytogenetic data that both species have at least one subgenome in common (the C). Interestingly, A. vaviloviana (AABB) grouped among A. murphyi accessions, suggesting they have an ancestral relationship or possibly share subgenomes (common variants of the A). The A. agadiriana (AAAA or AABB) accessions grouped together
in a fourth clade (turquoise branch lines), along with several A. murphyi accessions, possibly indicating a molecular relationship between A. murphyi and A. agadiriana. As expected, the A. sativa (AACCDD) oat cultivars grouped together in their own clade (orange branch lines). However, PI 657271 (hexaploid A. sterilis) fell into the group with A. agadiriana and A. murphyi (turquoise). A sixth, small clade contained a mixture of species (purple branch lines). It should be noted that discrepancies in the clades may be the result of misclassification of USDA-ARS materials. Some of these misclassifications were confirmed by seed morphology analysis. Not only does the dendrogram further validate the accuracy of the KASPar/Fluidigm SNP assay method, but also it may potentially be used to extract species-specific SNPs, although polymorphisms arising from indel mutations would not be scorable using this marker platform in contrast to the HRM method (Wittner et al. 2003).

The introduction of molecular markers has revolutionized genetics. Technology is enabling the study of species that were not previously viewed as economic priorities, being too remote, expensive or complex for consideration in plant breeding communities (Eathington et al. 2007). The array of polymorphisms and molecular techniques that are available is increasing, and the arrival of low-cost genomic sequencing is a source of an escalating set of available markers (Cullis 2002). As more genetic information becomes available, the application of molecular markers to other experimental methods will become simpler, allowing for novel genetic analysis that is currently impossible to undertake.

This study reports on the production and utilization of a toolbox of genomic sequence-based SNP markers and their application for genetic mapping and diversity analyses in
an obscure secondary germplasm resource, A. magna. Although the GR-RSC technique has allowed for marker development in a species that could someday be commercialized into an important high-protein oat crop, its broader relevance is to potentially facilitate molecular genetic marker development in a wide range of minor crops and wild crop relatives (Maughan et al. 2009).

As cost and time requirements are decreased, scientists will view the functions of plants with incredible opportunity for innovative research. Unknown mutations will be identified, along with increased understanding of structure-function relationships (Bernardo 2008). Molecular markers can be used in either marker-assisted selection or marker assisted introgression. However, as sequencing supplies increased information, molecular properties may reduce the need for introgression, thereby removing the need for growing or rearing plants in order to measure phenotype.

Plant breeding programs can take advantage of this knowledge to increase crop yield, disease resistance, and a multitude of other qualities (Eathington et al. 2007). The understanding of the interaction between genes and environmental factors, including other organisms, also allows for discovering chromosomal conservation and evolution (Bernardo 2008). Such genetic variation, both within and outside specific plant species, augments transgenic possibilities, or the transfer of genes between species by molecular techniques (Gelvin 2003).

CHAPTER 3: LITERATURE REVIEW

INTRODUCTION

Here we emphasize the utility of rapid marker discovery in the oat genus Avena using the wild Moroccan tetraploid A. magna (Murphy, 1968) as a source of new DNA sequence-based markers. Genetic marker discovery in tetraploid oat by single nucleotide polymorphisms (SNPs) should provide at least four major benefits for improvement of cultivated oat. Firstly, it provides a new set of markers for application in cultivated hexaploid oat breeding. Secondly, it provides a basis for genetic map development in A. magna, and potentially also A. murphyi (Ladizinsky, 1995) and A. insularis Ladizinsky, all of which are potential genetic resources for exotic alleles to improve cultivated hexaploid oat. Thirdly, the A. magna-derived SNPs potentially allow for tracking the genetic heritage of genes controlling traits of economic importance and other chromosome segments of interest back through the evolutionary ancestors of oat. Finally, these markers also provide for creation of a SNP panel that can be used to screen global diversity in all Avena species. Consequently, species-specific SNPs may be detected and analyzed for evolutionary patterns and divergences when Avena species of diverse genome composition are screened.

Common cultivated oat (Avena sativa L. and A. byzantina C. Koch, $2 n=6 x=42$, AACCDD genomes) was the world's seventh most important cereal crop, at 11.3 million harvested acres in 2008. (UN-FAO, faostat.fao.org). Although oat acreage worldwide has been declining over the past 100 years with the demise of the agrarian horse culture, the nutritional benefits of the common oat are beginning to make substantial contributions to the human diet. Therefore, the demand for high-quality commercial oats is increasing, due to the oat groat's
elevated soluble fiber content. The ability of soluble beta glucan fibers to lower serum LDL cholesterol has been medically documented and led the Food and Drug Administration to approve whole-oat product labeling as a health benefit beginning in 1998 (Cervantes-Martinez, 2001). Additionally, these crops have higher protein and oil contents than the other cereal grains (Holland, 2001). While oats are suitable for human consumption as oatmeal and rolled oats, one of the most common uses is as livestock feed. Oats are also used in some brands of dog and chicken feed (Magness, 1973).

The species composition of the oat genus Avena has been extensively studied cytogenetically and taxonomically, the latest review being that of Jellen and Leggett (2006). Prior to C-banding homoeologous chromosome groups in oat were unable to be differentiated by physical identification (Rajhathy 1963, Thomas 1974). In the late 70's Yen and Filton (1977) reported the first differences in heterochromatin detected by Giemsa stained C-banding in diploids. In 1988, Fominaya et al. performed the same method on diploids and tetraploids. The C-genome chromosomes were found to have significantly darker staining heterochromatin than the A genome. Hutchinson and Postoyko (1986) and Jellen (1994) published similar results on hexaploid A. sativa. The seven C-genome chromosomes were easily distinguished from the others as a consequence of their darker staining. However, the A- and D- genome chromosomes were difficult to be separated from one another. Linares et al. (1992) later attempted to assign the A- and D-genome chromosomes in A. byzantina based on euchromatin staining intensity and prominence and location of telomeric and interstitial bands. The analysis by Jellen et al. (1993) on C-banding patterns in AA diploids, AABB tetraploids and AACC tetraploids indicated significant alterations to the A- and D-genomes which prompted further investigation to
positively distinguish the two. In 1994, Jellen et al. provided the information necessary to differentiate the A- and D-genome using a powerful application of fluorescent microscopy known as fluorescent in situ hybridization (FISH). This technique allows for the detection of RNA or DNA sequences in a variety of cells, tissues and tumors. More specifically, FISH is a cytogenetic technique that is used to detect and localize a target nucleic acid sequence. FISH patterns combined with chromosome size and arm ratios identified by previous karyotyping analyses resulted in the development of a uniform nomenclature system to describe each chromosome in hexaploid oat. The A-genome comprises of the $8 \mathrm{~A}, 11 \mathrm{~A}, 13 \mathrm{~A}, 15 \mathrm{~A}, 16 \mathrm{~A}, 17 \mathrm{~A}$, and 19A chromosomes. The C-genome comprises of the $1 \mathrm{C}, 2 \mathrm{C}, 3 \mathrm{C}, 4 \mathrm{C}, 5 \mathrm{C}, 6 \mathrm{C}$, and 7 C chromosomes. Finally, the D-genome contains the 9D, 10D, 12D, 14D, 18D, 20D, and 21D chromosomes. Correct and uniform identification facilitates the ability to perform further oat cytogenetic research. Homeologous relationships may be evaluated between the three genomes, subgenome origins may be determined, alien genes may be introduced, and genes and molecular markers may be correctly identified and anchored.

Avena magna $(2 \mathrm{n}=4 \mathrm{x}=28)$ is a rather obscure, weedy tetraploid oat species native to heavy clay soils in agricultural areas of northern Morocco. It is of increasing interest to oat breeders due to its high protein content (up to 25% of the groat mass), large caryopses, and exceptional crown rust and powdery mildew resistance (Ladizinsky 1995; Ladizinsky 2000). This wild oat species has dramatic implications for genetic improvement of hexaploid oat because it is one of three possible ancestor-tetraploids of cultivated oat (Ladizinsky 1998; Jellen and Ladizinsky 2000). In order to facilitate genetic studies in A. magna, our lab made a recombinant inbred line (RIL) population derived from a cross between two A. magna
genotypes: Ba 13-13 and A-169. Parent Ba 13-13 is a phenotypically uniform and cytogenetically stable line derived from dual-backcross hybridization with hexaploid A. sativa, followed by repeated selfing, to transfer Ladizinsky's domestication syndrome (non-shattering, yellow lemma, glabrous, reduced awns) into A. magna (Ladizinsky, 1995).

Since essentially nothing was previously known about the molecular nature of A. magna, we used a genomic complexity-reduction and pyrosequencing protocol for rapid marker discovery using Ba 13-13 and A-169. We followed a recently developed genomic reduction approach based on restriction-site conservation using unique multiplex identifier (MID)-barcodes (Maughan et al. 2009) to dramatically reduce the size of the two parental genomes in preparation for 454-pyrosequencing. The resulting sequence-based contigs were assembled and screened for Single Nucleotide Polymorphisms (SNPs). Putative SNPs are being validated by a low-throughput genotyping technique called High Resolution Melting (HRM), which is capable of detecting polymorphisms, mutations, deletions, insertions and epigenetic differences in double-stranded DNA (Reed, 2007). As these A. magna-based SNPs are validated, they are being mapped onto the tetraploid population and are also being screened for polymorphism using a panel of hexaploid mapping-population parents. Once validated, the panel of SNPs can be screened on other species for global diversity of all other genome combinations. Species-specific SNPs may be derived to facilitate gene transfer from wild species for breeding purposes and to clarify evolutionary relationships among subgenomes within Avena.

PLANT BREEDING

Plant breeding is a scientific art that has been practiced for thousands of years. Initially, selecting plants with desirable traits for propagation was standard for breeders. More complex molecular techniques have since evolved. Regardless of the breeding technique used, the goals of plant breeding programs remain largely unchanged. Improvements in disease and pest resistance, yield, quality and durability are among the qualities that are aggressively being explored (Eathington et al. 2007). Molecular techniques generate the fragments of DNA sequences that may represent variation in genomes. Genome variation between two lines within a species can be measured. These DNA fragments are called molecular markers (Tanksley 1983). Gene mapping is produced as the chromosomal location or distance between markers is discovered. Genetic maps are created based on recombination frequencies. Partial exchange of homologous chromosomes during meiosis is referred to as recombination. The frequency of analysis may be determined by statistical analysis. Higher rates of recombination imply greater distances between molecular markers on the chromosome. Plant breeders may take advantage of these gene maps by using marker assisted selection. Marker assisted selection allows for the indirect selection of traits of interest based on the location of the molecular markers (Collard 2007). The goal of each molecular method is to generate dense, repeatable, accurate molecular marker maps. Sequencing methods are quickly emerging as the technique of choice for developing these maps, but its applications have yet to be fully realized (Rudd et al. 2005). As present limitations are diminished, and future applications and sequencing procedures are presented, the revolutionary effects of whole genome sequencing on plant breeding programs will be more fully recognized.

HISTORY OF MOLECULAR MAPPING

Gregor Mendel opened the door to modern genetics with his pea plant experiments in the mid-1800s. His discovery of patterned inheritable traits became the foundation of molecular mapping (Weiling 1991). In fact, until recently genetic linkage maps predominately contained markers for alleles with major phenotypic effects, or macromutations (Tanksley 1983). Many molecular techniques have emerged, contributing to denser, more accurate, rapid mapping. These methods include random fragment length polymorphisms (RFLPs; Tanksley et al. 1989), random amplified polymorphic DNAs (RAPDs; Martin et al. 1991), amplified fragment length polymorphisms (AFLPs; Blears et al. 1998), simple sequence repeats (SSRs; Oetting et al. 1995), diversity arrays technology (DArTs; Wenzl et al. 2004) and inter simple sequence repeats (ISSRs; Ratnaparkhe et al. 1998). Each of these marker systems has distinct disadvantages. Consequently, biotechnology has turned to sequencing to revolutionize molecular mapping.

Frederick Sanger successfully sequenced the phi X 174 bacteriophage genome in 1975 by enzymatic synthesis. His "shotgun" sequencing method commenced with utilizing random fragments of genomic DNA as primers to polymerase chain reaction (PCR) amplify the whole genome. The amplification products were overlapped and assembled based on overlapping contiguous transcripts, or contigs. Any gaps remaining between these contigs were resolved using custom primers (Sanger et al. 1977). Sequence segments, or reads, between 800-1000 nucleotides in length are capable. The method dramatically improved earlier DNA sequencing techniques developed by Allan Maxam and Walter Gilbert, as well as Sanger and Alan Coulson's own 'plus and minus' technique presented 2 years earlier (Sanger and Coulson 1975).Sanger's method enabled unprecedented speed in sequencing projects, expanding the scope of realistic
sequencing endeavors in all areas of biotechnology. Additionally, the use of radioisotopes and other toxic substances was limited, solidifying Sanger sequencing as the principle platform for nearly three decades (Sanger et al. 1977).

Perhaps the greatest accomplishment of the Sanger method was the complete sequencing of the human genome in 2000 (Waterston et al. 2002). This endeavor quickly drove the development of increasingly efficient automated procedures and process parallelization. New methods emerged to improve the speed, cost, throughput, and ability to process complex genomes for sequencing. This new wave of technology has become known as next-generation sequencing.

Next-generation sequencing was introduced by Pal Nyren and Mostafa Ronaghi in 1996 with their Pyrosequencing method (Nyren 2007). Unlike Sanger sequencing, which detects chain termination with dideoxynucleotides (Sanger et al. 1977), Pyrosequencing observes nucleotide incorporation by pyrophosphate release. Single strands of DNA act as templates while complementary strands are synthesized (Ronaghi et al. 1996). The DNA polymerase and chemiluminescent enzyme activity is monitored. Nucleotide solutions of A,C,G, and T are added and removed sequentially, producing light as the solutions complement the order of the unpaired template (Nyren 2007). The need for labeled primers, gel-electrophoresis and labeled nucleotides are thus eliminated. Despite the additional advantages of accuracy, flexibility, parallel processing, rapid analysis of large sample sizes and relatively simple automation, Pyrosequencing produces shorter DNA sequence read lengths of 300-500 nucleotides (Ronaghi et al. 1996). Consequently, genome assembly may prove more difficult, especially in the
presence of repetitive DNA. The history of biotechnology has proven that limitations soon lead to improvements, with no exception here.

Pyrosequencing was first commercialized by Roche's 454 Life Sciences in 2005. Their GS20 sequencing machine and GS FLX series were the first next-generation sequencing methods on the market. As many as- 400-600 million base pairs are capable of being sequenced within hours (Wheeler 2008). Advances in speed, read lengths, higher accuracy, and lower cost allowed the first competitive alternative to Sanger sequencing

Despite the progress in genetic research by next-generation sequencing, the limitations in utilizing these methods remains historically unchanged. Cost, time, effectiveness, and reproducibility still remain the principle determining factors of any research-based method (Coombs 2008). New technology brings novel concerns as well. Whole genome sequence analyzers have generated unprecedented amounts of data in a short period of time. In addition to the storage of this massive quantity of data, there is a need for bioinformatics programs and computers capable of processing prodigious amounts of information (Rudd et al. 2005). These programs increase the cost and complexity of such methods because of the need to hire or train personnel to run these programs and interpret their output. Notwithstanding, genome sequencing has profoundly impacted plant breeding programs. Genetic markers and maps are being developed with unprecedented accuracy, speed and depth. The properties and functions of genomes are being discovered, as well as the ability to view the original transcriptome expression (Eathington et al. 2007).

EFFECTS OF MAPPING ON PLANT BREEDING

The introduction of molecular markers has revolutionized genetics. Technology is enabling the study of species that were not previously viewed as economic priorities, being too remote, expensive or complex for consideration in plant breeding communities (Eathington et al. 2007). The array of polymorphisms and molecular techniques that are available is increasing, and the arrival of genomic sequencing is a source of an escalating set of available markers (Cullis 2002). As more genetic information becomes available, the application of molecular markers to other experimental methods will become simpler, allowing for novel genetic analysis that is currently impossible to undertake.

As cost and time requirements are decreased, scientists will view the functions of plants with incredible opportunity for innovative research. Unknown mutations will be identified, along with increased understanding of structure-function relationships (Bernardo 2008). Not only will genes be sequenced, but the expression of genes will continue to be found. Epigenomic understanding will increase plant breeders' knowledge of desirable traits. Molecular markers can be used in either marker-assisted selection or marker assisted introgression. However, as sequencing supplies increased information, molecular properties may reduce the need for introgression, thereby removing the need for growing or rearing plants in order to measure phenotype.

Characteristics that involve a large number of genes, or traits that are complicated to select due to genotype-environment interactions have been difficult to analyze. As sequencing allows for the direct monitoring of genotypes, the efficiency for selecting such traits is enhanced.

Plant breeding programs can take advantage of this knowledge to increase crop yield, disease resistance, and a multitude of other qualities that fall into this category (Eathington et al. 2007). The understanding of the interaction between genes and environmental factors, including other organisms, also allows for discovering chromosomal conservation and evolution (Bernardo 2008). Such genetic variation, both within and outside specific plant species, augments transgenic possibilities, or the transfer of genes between species by molecular techniques (Gelvin 2003). The transgenic properties alone, indicated by genomic sequencing of molecular markers, are invaluable to plant breeders.

REFERENCES

Barbazuk WB, Emrich S, Schnable PS (2007) SNP mining from maize 454 sequencing. Plant J 51: 910-918

Bernardo R (2008) Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci 48:1649-1664

Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): A review of the procedure and its applications. J Ind Microbiol Biotechnol 21:99-114

Braaten JT, Wood PJ, Scott FW, Riedel, KD, Poste LM, Collins MW (1991) Oat gum lowers glucose and insulin after an oral glucose load. Am J Clin Nutr 53:1425-1430

Cervantes-Martinez CT, Frey KJ, White PJ, Wesenberg DM, Holland JB (2004) Selection for better beta-glucan content in oat grain. Crop Sci 41:1085-1091

Chong J, Reimer E, Somers D, Aung T, Penner GA (2004) Two SCARs developed and associated with Pc94. Can J Plant Path 26:89-96

Collard BC, Mackill DJ (2007) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557-572

Coombs A (2008) The sequencing shakeup. Nat Biotechnol 26:1109-1112
Cullis CA (2002) The use of DNA polymorphisms in genetic mapping. Genet Eng P 24:179-189
Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154-S163

Eggum BO, Hansen I, Larsen T (1989) Protein quality and digestible energy of selected foods determined in balance trials with rats. Plant Foods Hum Nutr 39:13-21

Fominaya A, Vega C, Ferrer E (1988) C-banding and nucleolar activity of tetraploid Avena
species. Genome 30:633-638
Gardner KM, Latta RG (2008) Heritable variation and genetic correlation of quantitative traits within and between ecotypes of Avena barbata. J Evol Biol 21:737-748.

Garg RR, Bally-Cuif L, Lee SE, Gong Z, Ni X, Hew CL, and Peng, C (1999) Cloning of zebrafish activin type IIB receptor (ActRIIB) cDNA and mRNA expression of ActRIIB in embryos and adult tissues. Mol. Cell Endocrinol 153: 169-181

Gelvin SB, (2003) Agrobacterium-mediated plant transformation: The biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67:16-37

Groh S, Kianian SF, Phillips RL, Rines HW, Stuthman DD,Wesenberg DM. (2001) Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theor Appl Genet 103:9-18

Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT (2003) Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 49: 396-406

Harlan JR, Price EG (1973) Comparative evolution of cereals. Evolution 27:311-32
Holland JB, Frey KJ, Hammond EG (2001) Correlated responses of fatty acid composition, grain quality and agronomic traits to nine cycles of recurrent selection for increased oil content in oat. Euphytica 122: 69-79

Hutchinson J, Postoyko J (1986) C-banding of Avena species of Avena species. In Genetic manipulation in plant breeding. Proc Int Symp Eucarpia. September 8-13, 1985, Berlin.

Jellen EN, Beard JL (2000) Geographical distribution of a chromosome 7C and 17 intergenomic translacation in cultivated oat. Crop Sci 40:256-26

Jellen EN, Gill BS, Cox TS (1994) Genomic in situ hybridization detects C-genome chromatin
and intergenomic translocations in polyploidy oat species (Genus Avena). Genome 37:613-618

Jellen EN, Ladizinsky G (2000) Giemsa C-banding in Avena insularis Ladizinsky. Genet Resour Crop Evol 47:227-230

Jellen EN, Leggett JM (2006) Cytogenetic Manipulation in Oat Improvement. Genetic
Resources, Chromosome Engineering, and Crop Improvement: Cereals, Volume 2. CRC Press, pp 200-211

Jin H, Domier LL, Shen X, Kolb FL (2000) Combined AFLP and RFLP mapping in two hexaploid oat recombinant inbred populations. Genome 43:94-101

Kremer CA, Lee M, Holland JB (2001) A restriction fragment length polymorphism based linkage map of a diploid Avena recombinant inbred line population. Genome 44:192-204

Ladizinsky G (1995) Domestication via hybridization of the wild tetraploid oats Avena magna and A. murphyi. Theor Appl Genet 9:639-646

Ladizinsky G (1998) A new species of Avena from Sicily, possibly the tetraploid progenitor of hexaploid oats. Genet Resour Crop Evol 45:263-269

Ladizinsky G, Fainstein R (1977) Introgression between the cultivated hexaploid oat A. sativa and the tetraploid wild A. magna and A. murphyi . Can J Genet Cytol 19:59-6

Latta RG, Gardner KM (2009) Natural selection on pleiotropic quantitative trait loci affecting a life-history trade-off in Avena barbata. Evolution 63:2153-2163

Li YC, Korol AB, Fahima T, Beiles A Nevo E.)2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Eco 11:2453-2465

Linares C, Vega C, Ferrer E, Fominaya A (1992) Identification of C-banded chromosomes in meiosis and the analysis of nucleolar activity in Avena byzantina
C. Koch cv. `Kanota'. Theor Appl Genet 83:650-654

Magness JR, Markle GM, Compton CC (1971) Food and feed crops of the United States. Interregional Research Project IR-4, IR Bul. 1

Martin GB, Williams JG, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336-2340

Maughan PJ, Yourstone SM, Jellen EN, Udall JA (2009) SNP Discovery via genomic reduction, barcoding, and 454-pyrosequencing in Amaranth. Pl Genome 2:260-270

Mester D, Ronin Y, Nevo E, Korol A (2003), Efficient multipoint mapping: making use of dominant markers repulsion-phase. Theor. Appl. Genet. 107:1002-1112.

Mester D, Ronin Y , Nevo E. Korol A (2004) Fast and high precision algorithms for optimization in large scale genomic problems, Comp. Biol. Chem. 28:281-290

Mester D, Ronin, Y, Korostishevsk M, Pikus V, Glazman A, Korol A. (2005) Multilocus consensus genetic maps (MCGM): formulation, algorithms and results. Comp Biol Chem 30:12-20

Mukhopadhyay R (2009) DNA sequencers: the next generation. Anal Chem 10:1021-1027
Murphy HC, Sadanaga K, Zillinsky FJ, Terrell EE, Smith RT (1968) Avena magna: an important new tetraploid species of oats. Science 159:103-104

Nuttall FQ, Mooradian AD, Gannon MC, Billington C, Krezowski P (1984) Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care 7: 465-470

Nyrén P (2007) The history of pyrosequencing. Methods Mol Biol 373: 1-14
O’Donoughue LS, Kianian SF, Rayapati PJ, Penner GA, Sorrells ME, Tanksley SD, Phillips RL,

Rines HW, Lee M, Fedak G, Molnar SJ, Hoffman D, Salas CA, Wu B, Autrique E, Van Deynze A (1995) A molecular linkage map of cultivated oat. Genome 38:368-380

Ohm HW, Patterson FL, Roberts JJ, Shaner GF (1974) Registration of Noble oats. Crop Sci 14:906

Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30:450-458

Oliver RE, Jellen EN, Ladizinsky G, Korol AB, Kilian A, Beard JL, Dumlupinar Z, Wisniewski NH, Svedin E, Coon M, Redman RR, Maughan PJ, Obert DE, Jackson EW (2011) New Diversity Arrays Technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L. BMC Genomics (in press)

Orr W, Molnar SJ (2008) Development of PCR-based SCAR and CAPS markers linked to b-glucan and protein QTL regions in oat. Genome 51: 421-425

Pal N, Sandhu JS, Domier LL, Kolb FL. (2002) Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Sci 42:912-918

Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5: 94-100

Rajhathy T, Dyc lt PL (1963) Chromosomal differentiation and speciation in diploid Avena .II. Caryotype of A. pilosn. Can J Gene Cytol 5: 175-179

Rajhathy T, Thomas H (1974). Cytogenetics of oats (Avena L.). Misc Publ No 2. Genet Soc Can (Ottowa)

Ratnaparkhe MB, Tekeoglu M, Muehlbauer FJ (1998) Inter-simple-sequence-repeat (ISSR)
polymorphisms are useful for finding markers associated with disease gene clusters. Theor Appl Genet 97:515-519

Reed GH, Kent JO, Wittwer CT (2007) High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597-608

Ronaghi M, Uhlen M, Nyren P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242: 84

Rudd S, Schoof H, Mayer K (2005) Plant Markers - a database of predicted molecular markers from plants. Nucl Acids Res 33:D628-D632

Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441-8

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467

Schmid C, Bucher P (2007) ChIP-Seq Data reveal nucleosome architecture of human promoters. Cell 131:831-832

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599

Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3-8
Tanksley SD, Young ND, Paterson AH, Bonierbale BW (1989) RFLP mapping in plant breeding: New tools for an old science. BioTechnol 7:257-264

Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411-422

Thomas H (1992) Cytogenetics of Avena. In: Marshall HG, Sorrells ME (ed) Oat

Science and Technology, Monograph 33, Agronomy Series. Madison, WI:
ASA and CSSA, pp 473-508
Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjornstad A, Howarth CJ, Jannink JL, Anderson JM, Rossnagel BG, Stuthman DD, Sorrells ME, Jackson EW, Tuvesson S, Kolb FL, Olsson O, Federizzi LC, Carson ML, Ohm HH, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceplitis A, Langdon T (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genom 10:39

Van Tassell CP, Smith TPL, Matukumalli LK, Taylor JF, Schnabel RD, Taylor Lawley C, Haudenschild CD, Moore SS, Warren WC, and Sonstegard TS (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature Methods 5:247-252

Wang X, Su B, Fujioka H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. Am J Pathol 173: 470-482

Waterston RH, Lander ES, Sulston JE (2002) On the sequencing of the human genome. Proc Natl Acad Sci USA 99:3712-6

Weiling F (1991) Historical study: Johann Gregor Mendel 1822-1884. Am J Med Genet 40: 125

Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915-9920

Wheeler DA (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872-876

Wittner Ct, Reed G, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicons melting analysis using LCGreen. Clin Chem 49:853-860

Xu, Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu YH (2005). Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434: 640-644

Yen ST, Filion WG (1977) Differential Giemsa staining in plants. V. Two types of constitutive heterochromatin in species of Avena. Can J Genet Cytol 19:739-743

Young VR, Pellett PL (1994). Plant-proteins in relation to human protein and amino-acid nutrition. Am J Clin Nutr 59:1203-1212.

Yu GX, Wise RP (2000) An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome 43:736-49

Zhou X, Jellen EN, Murphy JP (1999) Progenitor germplasm of domesticated hexaploid oat. Crop Sci 39:1208-1214

TABLES

Table 1. Newbler Assembler results. All assembled contigs and unassembled singletons were compared to the NCBI non-redundant monocot database by BLASTx.

Total Number of Reads	706,426
Total Number of Bases	$27,200,520$
Number of Aligned Reads	$1,177,520$
Number of Aligned Bases	$363,482,847$
Number of Contigs	57,048
Number of Bases	$31,911,706$
Average read length per contig	345 bp
Average reads depth per contig	16 x

Table 2. SNP markers identified by SNP Finder. Number of SNPs found and coverage. True SNP results are reported for strict parameters.

Total number of SNPs found	31,304
Average coverage	$16 x$

True SNP Results for 10x, 40\% MAF, 100\% match within accession

Total true species SNPs found	12642
Total contigs containing true SNPs	6502
Total true SNPs/assembly length	0.000268

Table 3. A list of 16 Avena diversity lines for SNP assay validation.

VALIDATION
 PANEL

	ID	AVENA SPECIES	GENOME DESIGNATION
$\mathbf{1}$	PI 657427	damascena	AdAd or DdDd
$\mathbf{2}$	CN 23017	canariensis	AcAc or DcDc
$\mathbf{3}$	PI 657352	wiestii	AsAs
$\mathbf{4}$	PI 657576	eriantha	CdCd
$\mathbf{5}$	PI 657337	ventricosa	CvCv
$\mathbf{6}$	PI 657606	murphyi	AACC or CCDD
$\mathbf{7}$	PI 657271	sterilis	AACCDD
$\mathbf{8}$	PI 657514	magna	CCDD
$\mathbf{9}$	PI 657613	magna	CCDD
$\mathbf{1 0}$	PI 657620	magna	CCDD
$\mathbf{1 1}$	Cc 7070	magna	CCDD
$\mathbf{1 2}$	Cc 7071	magna	CCDD
$\mathbf{1 3}$	Cc 7073	magna	CCDD
$\mathbf{1 4}$	BYU 210	insularis	AACCDD
$\mathbf{1 5}$	BYU 661	sativa	AACCDD
$\mathbf{1 6}$	BYU 284	sativa	AACCDD

Table 4. The list of Avena genotypes used for the tetraploid-SNP diversity analysis.

Accession	Species	Origin	Locality
A-169	magna	Morocco	unknown
BA 13-13	magna	Israel	cultivated
GS7	sativa	Indiana	cultivated
Ogle	sativa	Illinois	cultivated
PI 412765	vaviloviana	Ethiopia	Shewa
PI 412767	vaviloviana	Ethiopia	Shewa
PI 412768	vaviloviana	Ethiopia	Shewa
PI 657271	sterilis	Morocco	Merchouch
PI 657274	barbata	Morocco	Merchouch
PI 657351	barbata	Morocco	Ain Aouda
PI 657355	murphyi	Morocco	Tangier
PI 657357	murphyi	Morocco	Tangier
PI 657358	murphyi	Morocco	Tangier
PI 657361	murphyi	Morocco	Tangier
PI 657364	murphyi	Morocco	Tangier
PI 657366	murphyi	Morocco	Tangier
PI 657367	murphyi	Morocco	Tangier
PI 657368	murphyi	Morocco	Tangier
PI 657370	murphyi	Morocco	Tangier
PI 657371	murphyi	Morocco	Tangier
PI 657372	murphyi	Morocco	Tangier
PI 657373	murphyi	Morocco	Tangier
PI 657374	murphyi	Morocco	Tangier
PI 657375	murphyi	Morocco	Tangier
PI 657379	murphyi	Morocco	Tangier
PI 657381	murphyi	Morocco	Tangier
PI 657394	barbata	Morocco	Larache
PI 657514	magna	Morocco	Maaziz
PI 657515	magna	Morocco	Maaziz
PI 657519	magna	Morocco	Had Brachoua
PI 657522	magna	Morocco	Rommani
PI 657528	magna	Morocco	Rommani
PI 657534	magna	Morocco	El Gara
PI 657535	magna	Morocco	El Gara
PI 657536	magna	Morocco	El Gara
PI 657538	magna	Morocco	El Gara
PI 657539	magna	Morocco	El Gara
PI 657541	magna	Morocco	Ben Slimane
PI 657544	magna	Morocco	Ben Slimane
PI 657546	magna	Morocco	Rommani
PI 657548	magna	Morocco	Rommani
PI 657551	magna	Morocco	Rommani
PI 657555	magna	Morocco	Had Moualine el Oued

PI 657557	magna	Morocco	Had Moualine el Oued
PI 657585	agadiriana	Morocco	Tifnit
PI 657590	agadiriana	Morocco	Tamri
PI 657591	agadiriana	Morocco	Tamri
PI 657592	agadiriana	Morocco	Tamri
PI 657594	agadiriana	Morocco	Tamri
PI 657595	agadiriana	Morocco	El Jadida
PI 657596	agadiriana	Morocco	El Jadida
PI 657598	murphyi	Morocco	Tangier
PI 657600	murphyi	Morocco	Tangier
PI 657601	murphyi	Morocco	Tangier
PI 657602	murphyi	Morocco	Tangier
PI 657604	murphyi	Morocco	Tangier
PI 657605	murphyi	Morocco	Tangier
PI 659373	magna	Morocco	Maaziz
PI 659376	magna	Morocco	Had Brachoua
PI 659378	magna	Morocco	Had Brachoua
PI 659380	magna	Morocco	Rommani
PI 659383	magna	Morocco	Rommani
PI 659385	magna	Morocco	Rommani
PI 659388	magna	Morocco	Maaziz
PI 659390	magna	Morocco	Maaziz
PI 659399	magna	Morocco	Rommani
PI 659406	magna	Morocco	Had Moualine el Oued
Provena	sativa	Idaho	cultivated
TAM-0301	sativa	Texas	cultivated

Table 5. Marker distribution and lengths of linkage groups in a genetic map constructed from a wild x cultivated A. magna RIL population. The map was constructed using JMP Genomics v.5.1.

Linkage Group	Total no. markers	Total length (cM)	Largest gap (cM)	Ave. marker distance (cM)
BAM 1	16	137.8	29.3	
BAM 2	11	122.1	26.1	15.4
BAM 3	13	122.2	28.4	19.9
BAM 4	18	149.8	30.7	16.4
BAM 5 6	13	73.9	17.8	14.5
BAM 6	19	88.4	31.3	10.8
BAM 7	15	128	35.8	8.4
BAM 8	24	150	22.8	13.9
BAM 9	22	110.6	16.4	11.2
BAM 10	22	133.5	24.9	9.3
BAM 11	18	119.8	29	10.9
BAM 12	23	155.8	25.9	11.8
BAM 13	24	145.3	18.3	12.2
BAM 14	20	124.8	17.1	11
BAM 15	25	122.9	31.1	11.5
BAM 16	19	95.6	19.2	8.9
Total	302	1980.5	Ave	25.3

FIGURES

Figure 1. Alternative strategies for developing molecular genetic markers in oat. The cost of sequencing remains a concern, especially in large or complex genomes, or orphan crops. Transcriptome analysis and DArT arrays have been used to overcome cost and complexity obstacles. Genome reduction is a novel, relatively inexpensive method for generating genetic markers for such crops.

Figure 2. Frequency of pyrosequencing read lengths (in bp, x-axis) plotted against number of library reads.(y-axis).

Read Lengths (bp)

Figure 3. SNP detection and coverage results. 31,304 SNPs were identified. (A) Number of contigs sorted by SNP quantity. (B) Number of "true" SNPs with 6X coverage and above.
A.

Molecular Function

B.

Biological Process

C.

Cellular Components

Figure 4. Putative gene ontology (GO) pie charts for the pool of GR-RSC DNAs from two A. magna lines, as determined by BLAST2Go, showing homology to genes for (A) molecular functions, (B) biological processes, and (C) cellular components.

Figure 5. Pie chart depicting SNP classification results from the GR-RSC treated A. magna DNAs. As expected, C/T and A/G SNPs derived from pyrimidine/pyrimidine and purine/purine transition mutations were more prevalent than purine/pyrimidine transversions.

Figure 6. Bio-Rad Precision Melt analysis of contig5030 ran across a subset of the BAM RIL population. Differences in melting temperatures, indicated by red and green respectively, validate putative SNPs.

Figure 7. Fluidigm analysis. Example of SNP assays using the KASPar genotyping chemistry on Fluidigm access array on the F8 RIL mapping population. SNP loci grs_ 54878 demonstrates dominance. The no template control (NTC) is located at the origin of the Cartesian graph.

Figure 8. Marker groupings are demonstrated for both Fluidigm (red) and Bio-Rad (blue) genotyping platforms. While Bio-Rad appears to have minor clustering along a few linkage groups, the majority of the markers appear to have random distribution across all linkage groups, supporting the efficacy of both chemistries.

Figure 9. The genetic distances (cM) of markers on each linkage group is shown in addition to segregation distortion. The blue spectrum indicates predominance of the A. magna A-169 allele at a given locus, while red indicates the predominance of the Ba 13-13 mapping parent's allele at a given locus.

BA_01	
$\begin{gathered} 0.0 \\ 14.2 \\ \text { 亿_ } \\ \text { BA_grs_62747_143 } \\ \text { oPt-4447 } \end{gathered}$	
20.8 GMI_c2391_5	
23.4	
29.1 OPt-1197	
41.9	BA_grs_55797_98
58.3	- BA_grs_54715_292
70.6	- BA_grs_66690_231
82.9	- BA_grs_61983_229
92.6	- BA_grs_83796_309
103.6	- BA_grs_24640_298
111.5	- BA_grs_15424_351
119.5	- BA_grs_39974_421
126.1	- oPt-7910
135.2	- oPt-15432
143.4	- BA_grs_42747_240
158.8	- BA_grs_11279_261
169.3	- BA_grs_46256_397
179.1	- BA grs 60221_323
188.1	- BA_grs_33469_357

BA_02

BA_3

0.0 - BA_grs_45736_154	
10.6	BA grs_59767_194
25.0 - BA_grs_72129_148	
	BA_grs_71963_165
	- BA_grs_106931_323
49.6	BA_grs_108904_232
	BA_grs_26639_367
	BA_grs_14756_221
	BA_grs_16610_132
	BA grs 59490_137
	- BA_grs_89279_219
	BA_grs_71868_375
112.4	BA_grs_39719_264
2.6	521_213
132.3	BA_grs_48717_114
141.5	BA_grs_35480_424
148.5	BA_grs_108332_177
158.1	BA_grs_103172_292
165.5	BA_grs_34088_196
174.3	BA_grs_44890_322
183.0	BA_grs_82325_251
187.9	Pt-7690
192.0	BA_grs_55135_245
196.1	BA_grs_17472_329
207.0	BA grs 25202404
214.1	BA grs 29062 294
223.1	BA grs 43373_424
232.8	AB_AM_796

BA_04

BA_07

BA_9

BA_10

0.0	
18.9	BA_grs_41650_119
27.5	
29.2	BA_grs_47079_104
34.9	oPt-2569
oPt-8259	
oPt-9063	

BA_11

BA_12

BA_grs_-77857_-106 BA_grs_72874_297
BA -grs 88253 - 382 oPt-10908
oPt-13070 oPt-1460
oPt-17170 oPt-7104
$1 \begin{aligned} & \text { oPt-17170 } \\ & \text { OPt-795210 }\end{aligned}$

Unlinked
GMI_c1361_1 GMI_c7461_1 BA_grs_103930_312 BA_grs_106369_131 BA grs 12266-246 BA_grs_17145_115 BA-grs_18812_249 BA_grs_17145_115 BA_-grs_29453_94 BA _grs_ 34954 _398
 BA_grs_ 43752 _328 BA_grs_ 48810 - 294
BA grs 54542 325 BA grs_54542- 325 BA_gr_ $56411-156$
BA_grs_ 58549127 BA grs $66238-275$ BA_-grs_58549_127 BA_grs_66238_275
BA_grs_70857_106 BA_grs_72874_297

Figure 10. Genetic map of A. magna A-169 x Ba 13-13 RIL population, including GR-RSC SNP markers (BA_grs_XXX) generated from Fluidigm assays. Other markers are as follows: GMI_XXX, hexaploid EST-SNPs; oPt-XXX, DArTs; AB_AM_XXX, SSRs. Distance shown is in centiMorgans (cM) in Multipoint.

Figure 11. 302 markers were mapped across 16 linkage groups using JMP
Genomics. Colors indicate magnitude of segregation distortion for individual markers

Figure 12. Heat Plot generated by JMP Genomics v. 5.1 (SAS, Cary, NC). Plot is based on marker-to-marker correlation coefficients. The key indicates decreasing levels of correlation between markers, i.e. dark red indicates 100% of the markers are shared between two RILs, dark purple indicates 21.43% shared markers.

Figure 13. Linkage Groups. The SNP markers indicated in red are some of the genome complexity reduced SNPs added to linkage
groups by Multipoint analysis. Their map locations demonstrate both linkage group extension and filling in "gaps" between EST based SNPS and Dart markers.

Figure 14. Sixteen Diversity Line Validation Panel Dendrogram generated from 330 primers run across diploid, tetraploid and hexaploid oat species having most known genome combinations. Bio-Rad's HRM platform was utilized to validate panel.

SUPPLEMENTAL DATA

Supplemental Table 1. List of 330 PCR primers used for High Resolution Melt analysis.

Forward Primer		${ }_{2}^{\text {Allele }}$	Reverse Primer
contig00740_F, AAATCCCAAAAATGAAAGAGG	C	T	contig00740_R GATCCACTTCAATTGGGTAGATAAT
contig00741_F, TTTGTACTATGTGTCATGTG	G	T	contig00741_R, TTCTCTTTCAGCAATTCCTTTTC
* contig01058_F, СGTCTCCACCCTCTCTTC	C	T	contig01058_R, CCCTTTGAAGATGTCGT
* contig02122_F, AGCAAGGCAGCCAACACT	C	T	contig02122_R, CATACGGACCTGAAAGC
contig00813_F, CCCATTGGTGACTAAACTTGC	C	T	contig00813_R, CCAGAGCAGTGATGCGTCTA
contig01530_F, GCTCAATCCGATGTGCAGAG	C	T	contig01530_R, AATGATTGGGAAAGTTGCTG
* contig01667_F, TTGTGGGTTAACAATGG	G	A	contig01667_R, CCGTGTTGAATGCTAACGTC
contig02239_F, AAGTTCCTCTCGATAAGATTGGTG	A	T	contig00239_R, GCAGATTAGGCAGAGGCAAG
contig02735_F, TCGGGATTAGAAGGGCAA	T	C	contig02735_R, TGATCTTGTTTTATGTGGCGT
contig03399_F, TGTCCCCTACCGACCAGT	A	G	contig03399_R, AATGACTTTGGCATTCACGTC
contig03486_F, GACAACGTATCCGTCGAACC	A	G	contig03486_R, CTATTCTATTCCGCAGGCTTC
contig03659_F, TCCGACGACAAATATGGTGA	T	C	contig03659_R, GAGTGGATGCGCAAAGTG
contig04271_F, CTCGAATCTGAAGAAGATCGT	T	G	contig04721_R, TATTGATGCGTGTGCCTGA
* contig04507_F, AATTCCGCCTGGATAGTAGC	T	C	contig04507_R, CGTTAAACTCTCAGTAACCCAGAA
contig04646_F, TTCCCTCTGCATCAGTCCTAA	G	A	contig04646_R, CTTCCTTTCAATCCGCTCAT
contig04737_F, CCTCGGGGTATCCTAAAACC	A	G	contig04737_R, AAAATTCCTGCTTCTCTACTTCG
contig04846_F, TCGTTCACCACACCTTACGA	C	A	contig04846_R, TTGCATTGTCCGCTGGTA
contig05114_F, TTGATGCAAAGGTAAGAGTTCA	C	T	contig05114_R, AACCTTGGCTTATGTTCTTTCC
contig05335_F, GAGTACTGAAAGTTTAACGACCAAC	C	T	contig05335_R, TGGAGACGGGTCGATAACTA
contig05451_F, CCGGGAGTGCATAAGTAGAT	G	A	contig05451_R, TGTTCGTGCGAGACAACG

contig05553_R, CAAGGCCTGCGATTTGAT
contig06414_R, TGAAACTGCGAGTGTCCTTG
contig06685_R, CTGCCTCGAATTGTGCTTG
contig07523_R, AAGCCAATCCTTCTTTGGA
contig07554_R,T TCTTCAAAGGTTGATTTTTATTCC
contig07611_R, AGCCACAATCCATGTGACATAC
contig07686_R, AGGTGTATTCGGTCGAGGTG
contig07813_R, CTCCAAACCCTGCATTCATT
contig07940_R, CTGGGTGGGGGTAGAAGG
contig08001_R, TCCACCGATTCTGAACGTCTA
contig05030_R, TCCTCCCTATGGGAGTAGCC
contig05049_R, TTCGCAAGTGTCTCGAAGTC
contig05063_R, TGGCCAATAGTTGGTTTCAA
contig05075_R, CCTGACTCTCTACCGATGTAGGAC
contig05084_R, GTGTTGCCGCAATTTAATGA
contig05100_R, TGCCCAAATCCAACTACTCA
contig05146_R, TGGAATCGCCCTACTTCTTC
contig05169_R, CTAAGAAAGGATTGGGTCCAC
contig05185_R, GCGCGGAGTTCACAGGT
contig05195_R, CCTCGTTAAATCCCATTGATTC
contig05264_R, AGGGCGAGACGTGATCTACA
contig05374_R, TGTGATCATTTGTGAGGACTAAA
contig05406_R, GTTGACGAGTGGAGGCTTG
contig05435_R, TGTTTAGAAGGCGTCTTTGG
contig05524_R, CGTACCGCCAATTTGAGATTA
contig05572_R, GGGCAAGTTGATGTTTGTGA
contig05573_R, ATGACCCACCGGAAGGA
contig05594_R, ATCAGCGTCATGGTGGACTT
contig05634_R, TCCCAAGATACTCCGCTGAC

contig05553_F, GGCCGCAATGAGTTACAGAA
 contig06685_F, TGGTCCAAGTCAGAGCTGGT contig07523_F, TGGAACTGCAACTTGATGATGA contig07554_F, CCAGGAAAGGAACTCCATGA contig07611_FTGACCCTCCTCCCTTAGTTG contig07686_F, CGTGGCATGCAAAGACATAG contig07813_F, GGAAATGCAAAATTAAAGTAAACAA contig07940_F, GTGCCGAGGAGGCTAAAGTT contig08001_F, AACAACATGGGACAACAACG contig05030_F, CGGACTGTTCCTTTGAGTCC contig05049_F, AGGTCAGGTCATCATTGATCTCT contig05063_F, GATCAAACCCTCGAAATGGA
 contig05084_F, AAATATGACCAAGCAGGGTATCA contig05100_F, CAAGGCATACAGTGCATCAAA contig05146_F, GGAGTTGACCCTTTCCAAGA contig05169_F, TTTCTGACAAGGCACCAAA contig05185_F, CGATTGGAAAGAAGACTTACCG contig05195_F, AAAGAACCGCGGTAAGGTG contig05264_F, AGAACGGGAAAGGCAAAGAT contig05374_F, AACTTCCAAAGTATATGTAGGCAAA contig05406_F, TGCGAGGTAATTGTGAATGG contig05435_F, GCCCTTAAATCGTTTATGCAG contig05524_F, GTTTCGCAGGGAACAAACC contig05572_F, AAATCCCACGCCCATTCT contig05573_F, GCTTGGAATCTCCGACTCAA contig05594_F, AGGGCAGGCCTATACTGAGG contig05634_F, CATTTCGTCCACAACCATCC

G	T	contig05650_R, TGAACAAGGCTTGCCCTAAA
C	T	contig05661_R, AGTTGATGCAAAGGTAAGAGTTCA
C	A	contig05664_R, CTTCCCGATCCGCTACAA
A	C	contig05715_R, ACCAACTCACCCATTCTTCTAA
G	A	contig05772_R, TTCATGACCCACTTCCTTGAC
A	G	contig05805_R, GACGACTACGGTGCTACGAA
C	T	contig05845_R, TCACACGACTTCGTCGACAC
G	A	contig05851_R, TGGCATCTTGGGTTATTTCA
A	G	contig05853_R, CAACACATGCCACAAAGCAT
G	A	contig05916_R, TTGTTGATATAATATTCACGAAGTACTGTT
G	C	contig05961_R, CATGGGCATACCAACATAATAAA
T	C	contig05965_R, GCCGCATAACGACCAACTAT
T	C	contig05966_R, GTTTGGGAGGAGAGCTTCG
G	C	contig06020_R, TCCGAATGCAAAGCTTGTTT
T	A	contig06043_R, TCAGAGTTTCTTTCACTAACCATAGG
G	C	contig06056_R, GGTCGATCGATCTGCCTAAC
G	C	contig06057_R, GGTCCTTCCCGAACCTTACT
T	C	contig06058_R, CCGCCCATGCTGTCT
G	A	contig06060_R, TTGAGATATGACATAGAACCATTCAA
G	T	contig06070_R, TGATGCACTTGTGGAAGAACA
G	A	contig06113_R, TAGCTGTTGCGTCGCTCTT
G	T	contig06120_R, TGGTCTCCTTAATTCCTACAGTTTG
T	C	contig06122_R, GTGGCAAGAGTTGAACCAAA
T	G	contig06142_R, CCGGGTGGATTTGTAATGAT
G	A	contig06158_R, AAGGCCACGAGCATAAGGT
A	G	contig06183_R, CGGTTGACCCATAGTCAAGA
T	C	contig06229_R, TGATGAACCCAAGTCAATTCC
G	A	contig06239_R, TGTATGGTTTGTAATGGATGATGT
A	G	contig06241_R, CGGATACCATGGTGCTCTAAA

contig05650_F, CCTGCCGTGGAGTCGATA

contig05664_F, CCCAAGATGGCATAAGAAGAA
contig05715_F, GATGAAGGTCACAATAGAGGAGA contig05772_F, TAGGCTATTGCCAGGCTCAG contig05805_F, ACTATCTTGATCGCCATCCTC contig05845_F, CTCTTTCCAAGTGGCGTTGT contig05851_F, TGTACTGTGGTGTTCGAGGAA contig05853_F, ACCGTTACCTGATTGGGTTG LVLOLLLLVLVVODLOOVOOOD ‘'916508!̣uo contig05961_F, AGTAGGATGGGTTGGGTCAT contig05965_F, TTGGAAATATCTTCCCGAAACT contig05966_F, CGACATGGAAATGATGATCG contig06020_F, TGGCAAAGTGTTCAATAGAGAAAG contig06043_F, CAATAATGCCTAAAGGTCATGC contig06056_F, CCGAAACCGGTAGCTTCA contig06057_F, TAGGTACCAACGAGCCGAGT contig06058_F, CGGTATCGCATCATCTAACTTT contig06060_F, GGCGGTGGTTGTTATTGTTT contig06070_F, AGCCTGACAAGAATCTGACCA contig06113_F, TCGGATGGCTTGATACTTCA contig06120_F, CTTGGCTCCTTTGAAATTACTGA contig06122_F, AGCTTCAGGGAAGTTGATGG contig06142_F, CCCATAGGTTCAACCGACAT contig06158_F, TGGTGTGGATACCGTTGTTT * contig06183_F, AACTTGGGTACCGCGTTG contig06229_F, CCACTTGCTTAATTAGGGATGAA contig06239_F, GCAATCCCAGGATTACCATT contig06241_F, AGGTTCGTGCATCGTGTTC
contig06279_R, GCCAGGGTGGCTCACA
contig06323_R, TTCTTCTCAGAGATTGTCTTAATTTCA contig06329_R, TGTTTCTCTTAGTTATTCTTTCTTGGTG contig06330_R, AGGTGGGAATGGATTTGTGA contig06372_R, AGCCTCCTCAGGGAGGTAAC contig06376_R, CATCCATTGGTGGGCTGTA contig06401_R, TTGTTTGCATACCCAAAGGTT contig06404_R, TTTCGAAGGGAATTTAACCAA
contig06427_R, GGTGACGGTGAGCTTGGA
contig06436_R, TGTGTATAAAGAGCAAATGATCACC contig06465_R, TGGTGTGCTTAGTCTTACTCATTG contig06471_R, GATTGACCTTGAATTAATTGTCCTTT contig06526_R, CCCTGTGAATACTTAGCAAACGA contig06565_R, GAACCCTCCTCCGACCATAC contig06583_R, CGATGATACCCTGCTTGGTC contig06605_R, TTCCGACCATATAGTTGGTTGTT contig06609_R, GACCAACTATACGGTGGGAATAA
 contig06617_R, ATCACCACAACATTGGACCT contig06619_R, ACCATCCACAAGGAACCACA contig06665_R, CAGACAACGCAGCTGTGAAC contig06672_R, TGCTTAGGGCGAAGATGAAT contig06725_R, GAAAGTCAAGGCCCTGGAAG contig06772_R, CTTCTGCGCGGTGGTAAA contig06847_R, CCAAGTTTGACATCTCCTCTACTTT contig06855_R, CACCACTGATGACCCACAAG contig06891_R, GCCATAGGTCATGCTACCAAC contig06897_R, TAGTAGCGGACGCCTTGTC contig06904_R, GTTCGATTAGGTCCGCTTTG

C
T
C
\ll
\cup
H
U
T
T
T
G
G
$\cup \vdash$
T
T
C
$\mapsto \quad-$

G
$\vdash \quad \cup$
U $\vdash \vdash \cup$
$<$
U
\cup
$\vdash \quad \cup$
C
$\lll U$
๒ \vdash
\cup
\cup
-
\qquad \bigcirc T
contig06279_F, CAGGGTGGACTCACCACCT contig06323_F, TGCTTGCTTCGTTCTCGTATT contig06329_F, GGAGAACCAAATAAAGACCCAAA contig06330_F, GCAACCTCTTAGGCAAATCG contig06372_F, GGACGCCTTCAAGAGGAAC contig06376_F, CAGCTACATGGTTGCAGGATT contig06401_F, AAACAATCAACCCTCCATCC contig06404_F, TGTCCATGGATTTGGTGACT contig06427_F, CCAAACCGAAGCCTCGAC contig06436_F, CAAGAATTATTGATCGTGTTATGGA contig06465_F, CCACGGCTTACTAAACCTGAA contig06471_F, TGGAAACTCACATCGACGAA contig06526_F, CGTTTGTTCGTTGTCTTTATTACTTG contig06565_F, ATGGCAACCATCTCACCAAG contig06565_F, ATGGCAACCATCTCACCAAG
contig06583_F, TCTTGGTGTTTCTCCCTTGTTT contig06605_F, TCGTATAGTTGCTGCGACATC contig06605_F, TCGTATAGTTGCTGCGACATC contig06610_F, CTATACGGCCGGACTAAGAAA contig06617_F, TTTGATCAGTATTCTAAATAGTGCAGTT contig06619_F, CGGAAGCTTTAATAGGCCAAA contig06665_F, GAAGTTCCTCGGCCTCTACC contig06672_F, ACAACCAAGAAATCGCCAAA contig06725_F, AAAGAAACCCGGTGCACAT contig06772_F, TCCGTACCTTCGACCCAATA contig06847_F, TCAGGATCATGGCAACCTAA contig06855_F, CTTCTGCTCCTCGTTGGAAT contig06891_F, TGGGTATCCTCATAGCATGTCTC contig06897_F, TTGATTTCATCAAGACCCAAA contig06904_F, CAGACGGAGCGCTTGAA
contig06913＿R，TGGTCCTGCTACACGTTTGA contig06919＿R，TGGGATAGACCGGCACTCT contig06923＿R，CGTACCGCTTCGCGTTTA contig06926＿R，CCATATAGATATCTTTGCCATCG contig06948＿R，TGAGTGGGCACGACGAA contig06997＿R，GACCTCCGGCTTCTTAATCC contig07003＿R，CACGTCCGCAACCTATGAT contig07005＿R，GCTCAAGTAGCATGCTGTCAGT contig07025＿R，CGAACGGGAGACATCTTCAC contig07044＿R，CAAGAGTCCGTAGGCTACTCG contig07075＿R，CAGGAGCTTCTGCTTGTCG contig07112＿R，CTGGTGGGCACCTTTGAAT contig07179＿R，CCGTTTGTTCGTTACTTCTGTT contig07190＿R，AGGCAGGAGCATGTTATTGG contig07202＿R，GGGCGGAGGTTTGAGG contig07252＿R，AAGAATCCCACGCCCATTAT contig07262＿R，TTTGGAGAAGGGTCGACAAC contig07267＿R，GATGGAGTCATGTTGTATATA contig07312＿R，TGGTTGTTCCTCTCAAGGAGTT
contig07325＿R，TATTATGGGTCACCGGCTTT contig07394＿R，ACCACTTGCTCTTTCATTTGG contig07454＿R，CATAATTATCACCTCTCAAATACGAA contig07480＿R，CCGCCGTATAGTTGTGAACC contig07497＿R，GGATGGACAATTCCATGACC contig07508＿R，CTTGTTCTTCAAGCAATCGAGAG contig07577＿R，GCCAGATTTAGCTCGGATTG contig07579＿R，GACTGCCTCAGCAAACTCG contig07599＿R，TGCTAACGCCAATTACGAC contig07612＿R，TGGTCTGAGGGAATGCTTCT
 G \bigcirc《 FU ט \cup C U \cup T $<$ \qquad r《 $<$ \cup U $ー$ 0 ＜《《 $<$

せ Uトトト ト

contig07623＿F，TATGCAAGAAGCGTTCACCA contig07634＿F，CGCCTTTAAGTTAGGCATGA contig07650＿F，TCGAATCTGAAGAAGATTGTGTTG contig07652＿F，GGAAGATGAAATCGAACTCACA contig07662＿F，TGGGCAGTCCGATAGAGA
contig07671＿F，TGAAGATGAAGATATTGATGTTATTCAA contig07692＿F，CCCATCACAAATGAATCAACC contig07694＿F，AACCAATGGCGTCCAATAAC contig07698＿F，TGATGGCTTAGCAACTGGAG contig07717＿F，CGATCAGAGACGTGGGAGAG contig07749＿F，TCATCATATCAGGCATGGGTA contig07754＿F，ACCTCCTCTTGCTTGCTTCA contig07766＿F，AAGCCGGAGCCATACGAT contig07790＿F，GACGTCTACGCGGAGGAA contig07795＿F，ACTTCCACTACGGCCTCCA contig07849＿F，ACTTCCACGCGGAACGTAT contig07850＿F，TTTGGCGTGAGTCTTCAGG contig07896＿F，TGATATTACTTCATTTGCCACTCG contig07920＿F，CCAAGACTTGCATGATATGGAG contig07937＿F，AATTGATGGACAACGCTCTTC contig07946＿F，TGGTATCTGAACCAGGTTGG contig07955＿F，TCTTGCGAACATGTTATTTACAA contig07964＿F，CCAGGAAATCCAAGGGTTCT contig07998＿F，CAAGATCGGTCTTCGGTCTG contig08042＿F，CAATTTGCAGCATTAGTTTACTCCT contig08078＿F，GCGTGAGCAGAACCTAATGA contig08099＿F，TTTGTCCATACTTCATCTCATCAC contig08104＿F，CGGAAGGGTAACCTTGCTAA contig08112＿F，CGCCGGAACAGTTGTAGAAT
contig08123_R, AGGAAGCCAACGATGAAGTC contig08187_R, CCATGGCGTTGCTAAGG
contig08191_R, TTTGAAATGATTAACTATATCCAAACC contig08196_R, TTTCTCGTCCGTCCTTGG
contig08229_R, TGCATGTAATAATTAAGAGGGTGA contig08238_R, ACGCCTCTAAAGGACGTTCA contig08250_R, GCCACTGGTCAGTCTCTGGT contig08255_R, CTCATATCCAGTGGAATAAACACA contig08269_R, TGTTTGCTTTGGAGCACTTG contig08289_R, TCCTAAGAGCGGAAGTGACG contig08303_R, GTCGGAGCAGTGGGAGTG contig08308_R, GAGGAAATTAGCCAATGCAAGA contig08310_R, CGAGTCGTAGAATGCATGTG contig08320_R, TCCAATTCTATATGTATTAGACTTCTTGC contig08335_R, GACAGTGGTAGAGAAACTCAAAGG contig08350_R, ATGGTTCCGGCCGTATAGTT contig08398_R, CAGACATGTAATCGCCCAAA contig08414_R, TGTTGGTTGGTAGCCTCTAATTC contig08417_R, TCGGGATGCATTCTCTAAGC contig08426_R, CCGAGGGATCATTACCCTTT
contig08456_R, TGGTATTTAGTTGCTGGGTATATATAGGA contig08466_R, ATTGGAGTGCTGGCGAAAC contig08526_R, CCAGGGCACCGATCC
contig08531_R, CAGTCGCCGAGTGTGAGAC contig08542_R, TGTTCTACAAACCTCTACACTTGGA contig08547_R, TTCGGTGTGAAGTCTTGTGG contig08552_R, ACGATTCAACATCCGAGTACG contig08566_R, TATCCGGGAGCATAAATCCA contig08574_R, CGCTTGACGCTTGAGTTCTT トト \& < O \&F

contig08123_F, CGATCAGGTTCGGGATTAAC
 contig08191_F, GAATCTGATTAGACATTTGGAGTGA contig08196_F, CTCCTGTTGAGCCGTGAAG
contig08229_F, AGAAATTATAAGATCTATGGACCACTTT contig08238_F, GGAAAGTTGTTGTCCCGAAA * contig08250_F, CCACCCGGGACCACTT contig08255_F, TGTGTATTGGGTGATTTGACTTT contig08269_F, CCGGAGAGAGTCGGGATATAG contig08289_F, GTCCCGCTCACCGTCTT contig08303_F, TCCCTCTCCTCTTCCTTTCC * contig08308_F, CTCCGGCCCGAGACC
contig08310_F, TTCACCCATTACTACTCAGATTAAGTT contig08320_F, TGATGCTTTCTAAAGGATTACAGAA contig08335_F, CCAATAATGGCTTCCTCAAGA contig08350_F, ATTCCGGTCGTATGGTTGGT
contig08398_F, CACTCTCTGTGCTGAGTATGGTAGA contig08414_F, CTGAATGCTCAACACCCAAA contig08417_F, CCGCCACATCACCTCATC contig08426_F, TCACAGACCGACATCACCAT contig08456_F, TCGTTCGGGCTTCAACAC contig08466_F, GAGGGTAGGACACGGAGGTT contig08526_F, GTTCCTGGGTACGCGACT contig08531_F, CTGCTTCCAGCTCCTTCGT contig08542_F, AAGCTTGATGTCTACGCACTTC contig08547_F, TCCTCTCCCGTGCGTTT
contig08552_F, CATGGGCAGGGTTATGGA contig08566_F, CGGTACTGGCTCCGAGTCTA contig08574_F, AACTCTGGGCCTTTGTTCCT
contig08577_R, TGTAATGGTTCAATTGGAGCTG contig08585_R, AGTAGCGTGATGCGGTAGTG contig08597_R, TTCACGGAGCGAATTAATGG contig08614_R, AAACCCTCGGTATTGATTCTTACT contig08631_R, GTGTCCGACGATGATGCTC contig08636_R, CTCAAGTACAACCGCGATCA contig08639_R, CAGTTTGGTCGTCATTCTTCC contig08676_R, ACATGCAAGGAGTTCCCAAG contig08685_R, TTGAGAATGGTCGTTCCTGA contig08692_R, CCCTTCCACTAACACTTCTATGA contig08696_R, TCCCAGGTATGGTCCTTCC contig08736_R, ACCCGTTGCTTGTATCCAGT contig08774_R, CGGAGCAAGGCGATCA contig08804_R, AGACCATGATAAGTGTGTTATTAGGA
contig08844_R, CAAGAAGTGAATGCAGATGTGA contig08844_R, CAAGAAGTGAATGCAGATGTGA contig08853_R, CCAGTTCTGGGCCGACTT contig08855_R, CACTTTAAGTACTTCTTCAACTTCCA contig08859_R, ACTATCGTTCGACCGCCTAC contig08876_R, GCATTAGGAAGGCGAACAAA contig08884_R, CACTTCATGACCCACCTTCC contig08927_R, ATCAAGCGGAGGATCTGG contig08942_R, GGACGACAACACACGAGAAG contig08966_R, TATTCCCGCCGTATAGTTGG contig08974_R, TCACGTTTAAAGAGTCACTGACCA contig08996_R, CTCGATCTCGGAAGTTGTGG contig09048_R, ATCTCCCAAGCGAGTTCTCC contig09050_R, TGTCGGGCTGTGTCTATGAG contig09052_R, CTTATCTCCGATCACGCTCAG contig09113_R, TCGTGCATCTATGTTCTCGTTC
G
A
C
G
C
G
T
T
C
A
T
C
C
T
A
G
A
A G T
T
A
T
T G T
T トU
 $0<$ \bigcirc $\cup \ll U$ $\cup \cup$ G
C \cup < \cup $\cup \cup$ $<$
contig08577_F, CCTAAGAAGGACTGGCTCCAT
contig08585_F, ACATGTTGCGGATGCTCTT
contig08597_F, GACCCTCTCCGCCGTTAC
contig08614_F, CGAGGTTCCCATTCTGTAGG contig08631_F, CCCTCCGTCTTCTTCTTCTTG contig08636_F, AGGCTGGTATACAAGGACGTG contig08639_F, GTCGTTTATGTGTGCCAAGC contig08676_F, GACGCATCGACTGCTTGAC contig08685_F, TTCAGAGGTAGATGGGTGCAT contig08692_F, AACCCGAAGAAGAACAAAGTT contig08696_F, AAAGAAACCCGGAGCCATA contig08736_F, TGTAGGGTTTGCAGCATAGAAA contig08774_F, ATCGATGGCTCCCATCTTCT contig08804_F, ATCATAGACCTACACTGTTCTTTACTTACT contig08844_F, GCAGATACAATTGGTAGGTAGTCG contig08853_F, GAGTGGGCACCGGATAGTC contig08855_F, GAAAGATCGAAGTTTAATTCCAGA contig08859_F, ATGGGTATTCTCGGACCGTA contig08876_F, GCAGAGAATGAGGGTTTGAGA contig08884_F, CAGGCTCAGTTGTTGTCGTC contig08927_F, ATTTCCTCCGACCTCGTG contig08942_F, CCATTGCCATACACAACCAA contig08966_F, TTGTTTCGACATCAACCCTTC contig08974_F, CGGCCCAGTGTCACTCC contig08996_F, ACCATGGCACATCTCAGGTC contig09048_F, CCGCTTGTGCTCGTTCAT contig09050_F, AAGTGCACATCGATCTGTGG contig09052_F, TTATGACTCACGGCGATGAA * contig09113_F, CCGAAACCATGGTGCTCTAA

contig09133_F, TATTCCTCCAGCTCCACCTC
contig09134_F, GCAGTAGTAACAATTGCAGCAAAC contig09232_F, GTCTTCAACTCGGCCAAGAG contig09236_F, CGACCAACTATATGGCTGGAAT contig09286_F, GGCTTATGAAACTTCCTCTCG contig09299_F, GCTTCGAAAGGTCTGACAGC contig09327_F, AAATTGATTGGAGACCCATGTC contig09343_F, AACGTCGGTAATGCCCATAG contig09347_F, CGACCAACTATACGGCAGGA
 contig09380_F, GGAAGAACAACGGACAAGGA contig09406_F, CAGTGCAGACGCATGGTTAT
contig09410_F, TGAATAAGGAGGCAACTTAATAGCA contig09437_F, GATGGCATCAACCATAATTGG * contig09446_F, TCCTTTCTCTTCTCCATTCATCA * contig09497_F, CCTTGGTATTTACCCACCTTT contig09506_F, ACTTGTCAGCCATCTATAAAGTGA contig09544_F, TGACTCATGGAGTCGTGTTG contig09548_F, ATGATTCCGGTGAGCACAA contig09553_F, TGGTTGCAGGATTACGACAA
 contig09570_F, CCCTTGTAGACCATACGTGGTT contig09628_F, CTTGTCATATTTATACCCTCACCA contig09642_F, CAAGTTCAAGCCGGTGATG contig09654_F, AAGGAAGGCCCAAGAAACAT * contig09670_F, TCTTCCTCCAACGAAACCAT contig09678_F, AGGGTTCGTCCCTTTGAACT contig09679_F, GTTCCCGCCGTATAGTTGC contig09713_F, ACCTCCTCTTGCTTGCTTTG
contig09727_R, GGTCAAACTATTCTTTGCCTCAA contig09800_R, TACAAATCCAGACGGCACAC contig09806_R, TGGAGGATCAGAGGAGAAACA contig09816_R, TGTAGGCGAAGCTCTGCTG contig09849_R, ATGGCAAGCATCAAACATGA contig09873_R, GGTCCCACAATACCCAGAAG contig09887_R, TGATAGCCGGCCTGTCTTAC contig09894_R, CCGAGCTTCCTCCATGTTT contig09912_R, TGCGACATCAACACTTCCAT contig09928_R, TGAGGGCTTGATCGCTTAGT contig09941_R, GGGAGGAGAGGGAGACGTT contig09945_R, GATTAGAGAGAGAGACAATG contig09953_R, CGAATTGAAGAATTTGCCAGT contig09959_R, GCCCACTACGCACAGCA contig 10021_R, GGGTTTCATGATGTTGTTAGGA contig10044_R, GTATTGATCGCCGGAGGTT contig 10049_R, GGTGCCTGAACCAATGAAAG contig10054_R, GTCACTGACCACAAACATCAAA contig 10062_R, GATACAAGAAATGAAATACTGGAATTAAA contig 10066_R, CGCTTGATTGCCATTGATT contig 10085_R, CGAAATTTCAGATGAGGTTGG contig 10110_R, TGGGTATATATTTACAGGTGTTGAAA contig 10161_R, GAAGTGATGCATGACATTGAAAC contig 10197_R, CCAAATCGTATACATAAATGGAGAA contig 10260_R, AGCACTCACACCGGAGGAT contig10318_R, TTTGGTATGCGTGATCTACCTG contig 10320_R, AAGTAAGAATCAATACCGAGGGTTT contig10323_R, TCCGAACTACTGGAGGATGC
contig 10327_R, CCAGTTGGATTATATCACTTCAAGA

contig09727_F, AAACCAAATAGAGACCACTTCGAG contig09800_F, GTTAGTGCTGCGTCGCTTAG contig09806_F, GAAACCTCAAGGGATCTTCATC contig09816_F, TGGAGAGACGGATTGGATCT

 contig09887_F, CCCAACCGGATAAGAAACAA contig09894_F, ACCGTGGCCGATGGA * contig09912_F, CCCAACTATATGGGCGGAAT
 contig09941_F, TTTACTCCGGCGATCAATTC contig09945_F, TTGGACAAGAATTTGGTGTTTC * contig09953_F, TGAAAGTTTAGCACTAATAATAACATGAAA contig09959_F, CCCTTCGCCACTCTCTCTATC
contig 10021_F, GAACTTAGCATTCAAATTAGCAACA contig10044_F, CTGGTGTGGTGTTTCCCTTC contig10049_F, TCATAAATTCGTGGCATGGA contig10054_F, GGCCTCTTAGGCCATTTGT contig 10062_F, GCAACTCCTTTACTTGACGAGA contig10066_F, GCGGAGAGGGAGAGGTTTA contig10085_F, AAGGCTGGACACTGTGCTCT contig10110_F, TGCTTGCAAATTATAGGATGG contig 10161_F, GTAGGCAGAGGTCGTTCTGG contig 10197_F, CCACCTTTAAATGACCTCCA contig 10260_F, AGAAGTGCGTAGACATCAAGTCTTT contig 10318_F, TGCCACTGACTGGAACTGTC contig 10320_F, TGCATTAATGATTTCCTTGCAG contig10323_F, GTCCTTCTTTGGCGAGGTG contig 10327_F, TCATGGACACTGCATCTAACA

C	G	contig10364_R, GAGGCAAATGCAAATAATGG
G	T	contig 10421_R, AATCCTTTGGACGTGCTTTG
C	T	contig 10493_R, TCCAACCTACAGATCTTCCTAAA
A	C	contig 10509_R, GCCTTCCGTCGTGGTGT
C	T	contig10538_R, TTTCTTGTTCCTACACCTCAACC
C	T	contig 10539_R, TTGCATTTAATTGGCGTTCA
G	A	contig 10555_R, CCCTTTGTGTTTGACAGGTTT
A	T	contig 10556_R, CCATTCAAATATTACACATGACTATGC
A	G	contig 10577_R, TGATGGAGCATCTCAAGACAA
A	T	contig 10582_R, AAACGCAAATGTTCCTCCAC
A	G	contig 10592_R, ATGAGGCGTGACGTGGA
A	G	contig 10600_R, TGACAAGGCCCAGAAGAGTT
T	C	contig 10608_R, ATTCCAATACGGTGCCAATC
G	A	contig 10611_R, CTCAATCACCACCTGAACGA
T	C	contig 10624_R,TTTAGACCACAAGTATCTAATACAATATGA
C	G	contig10626_R, GAGGCACGGATGGGTTAATA
A	G	contig 10635_R, TTACAGGAAGCGAGGAAGGA
G	C	contig 10669_R, GGCACAAGCAAGCAAATAAA
C	T	contig 10684_R, ACGTACTGATCGGTTGTCGAT
G	T	contig 10685_R, ACGACAGCACAAATTTCCAT
G	A	contig 10729_R, TGCCATGAACGTGTGGAATA
T	C	contig 10730_R, CAAGGCCCTATTGGAGGACT
C	A	contig 10736_R, AAACCTTGGTTTCATAACTGAGGA
A	G	contig 10773_R, CTCCGAAATGTTGTGTCCAA
C	T	contig 10778_R, AAATAACTTGAACCTAATAATAAATGTCG
A	G	contig 10798_R, CGCGAGTCTTTGGATAATGA
C	T	contig10820_R, AAGAATGTTGATGGTATTCTTCCA
C	T	contig10836_R, AATGCCGCATGTTTAATGTT
G	A	contig 10844_R, TGAGCATATTGCATGTTTCAA

contig 10364_F, GATTTGAGCAATATAAGGTCTTCG contig10421_F, CTCCTTTGACCGCGTAGTTC contig10493_F, CAGTGGTATGCTGGGTCAC contig10509_F, ACGTCGTCGAGGTCGAAAT contig10538_F, CATGATGGAATGATACACAATTTACA contig 10539_F, GGGTGGCACTACTCGACCTA contig 10555_F, GCGTCCATAACACATTCCAG contig 10556_F, GGAGATAGGCCAGGGTTGA contig 10577_F, TGGCTGTTTGGCCTTATTAAA contig10582_F, CAACAAACTCCAATAGTTGAAGCA contig10592_F, GCATATAAAGACCATCGGGATT contig10600_F, CGGCTACGTTACAGAGTCGAT contig10608_F, GGCTTGGTACTGCTACACTCC contig 10611_F, AGGTTCCTGGTGCAACATTC contig 10624_F, ACAAGTTTAGGACACATCAAAGC contig10626_F, TTAAGAACTCGGGTCCTTGGT contig10635_F, TACCTTGAGCTTCGCCACA contig 10669_F, TTAGGTCTCACGGATTTGCAT contig 10684_F, TGCGCGTCGTCTTCAA contig 10685_F, AAGATCCCAGTCACCAAAGAA contig10729_F, GTGCATGACCTTTCGAGGTG contig 10730_F, TTGACGGGAGAGGTAGGAGA contig10736_F, TGTAGAGCTCGTTGGGAACC contig10773_F, TGCATTCTTGTGCGATTACC contig 10778_F, TGATGCATGCCATGGTAATA contig 10798_F, ATGCTCACCGATGCCTATTT contig 10820_F, TGTTTGCAATACACAAAGAATCAA contig 10836_F, TGTGCCTCTGCATTATTTACC

[^0]
Indicates robust primer sets used for genetic mapping
Allele 1 and 2 indicates the SNP being interrogated
contig10846_F, ATTAGCAGCGTCCTTGGAGA
contig 10863_F, GATGCTCCTGCAGTGCTAAG contig 10881_F, CGATGGAACCACAGAAACAT contig 10884_F, TTCAATTAAGACATAATGCATCTCA contig10914_F, CGGTGGAACCAACTATACGG contig 10925_F, CACATGAAGGTTCCGAAGGT contig 10937_F, TTTGCTATATTCTTCTCTTGTGATAAA contig 10969_F, TTCCGACTTTCCTGGAACC contig11010_F, TGTCATCTTGATCACTTATTAATGTTT contig 11012_F, CTTGCAGCTTGCTCTTCACA * contig11013_F, GGCTCGCGCTACAATTATG contig11017_F, AATGTAAGATGTTGGTAATTTACATTGG contig11032_F, CCTTACTGGGCAATAATGGTTT contig11053_F, GGTACGTATAAGCGTCCCTGT * contig11059_F, TCTAAAGAACTTGCCGCTCA contig 11097_F, GACAAGCTTACGGCCAACTC contig11107_F, ATCAAGCACAACGGTCTGAA contig11129_F, AGGGAAGACGTGATGGAATG contig11147_F, TGGCAATCAAAGTTTGGAATC
Supplemental Table 2. List of 768 SNP primer pairs used in KASPar assays on the Fluidigm EP1 platform.

Forward Primer 2

 GAAGGTCGGAGTCAACGGATTGCTGATCAAGCACCTGCTTCG gatgitcgaatcaacgaattatccaagtatccttctccacaatca GAAGGTCGGAGTCAACGGATTGGTTGTGGTGGTTGTTGTACTTTC GAAGGTCGGAGTCAACGGATTGGATCCTGCCTATGATTTCATTGC GAAGGTCGGAGTCAACGGATTCCACTCTCGACATGCTTGCAC gaAgGtcgGagtcaacgGattgctacacttcggctgacttcta Common Reverse Primer | $\begin{array}{l}\text { Common Reverse Primer } \\ \text { CCTAACCTTGGTCGTAGACTCTTCTT }\end{array}$ |
| :--- |
| TGGGCTATtTGGGGGGTTTTGGAT |
| AGGGTGAGAAGGTTCGGTTCCAT |
| TAGTTTTGATAAGAACAGCTCGGGATCAT |
| TGCCATAGATGGCCCGGTTACTAT | tgCcatagatgacceggitactat ACGATGGTGATCACAGGCACGG

\qquad
Z

Al_BA_grs_14015_350	GAAGGTGACCAAGTTCATGCTTTCTTTCAGGACTACTAAAGACTACG	GAAGGTCGGAGTCAACGGATTCTTTCTTTCAGGACTACTAAAGACTACA	tTTGGGTTAAGTTAGTAACTTACTAATTTT
Al_BA_grs_109705_162	GAAGGTGACCAAGTTCATGCTTTATTGTGTTTTCACCCTTTTAAATTATTTCG	GAAGGTCGGAGTCAACGGATTTATTGTGTTTTCACCCTTTTAAATTATTTCA	CGACTCGGGGAGGTCGGCAA
Al_BA_grs_17079_189	GAAGGTGACCAAGTTCATGCTTGGCGTACTGCACAATACTTCG	GAAGGTCGGAGTCAACGGATTAGTTGGCGTACTGCACAATACTTCA	CTCCTGGATGTTTCGGTTGCGCTT
Al_BA_grs_106931_323	GAAGGTGACCAAGTTCATGCTTCAGGAGTTTGTATAATGGTGCGG	GAAGGTCGGAGTCAACGGATTTTCAGGAGTTTGTATAATGGTGCGT	GATGCAGTCAGTCGGTTCGTAAGAT
Al_BA_grs_36836_433	GAAGGTGACCAAGTTCATGCTGTCAATAGAGTGCCCCACAGAC	GAAGGTCGGAGTCAACGGATTGGTCAATAGAGTGCCCCACAGAT	ACGCTTCAGTTCTGTGGTGACCAT
Al_BA_grs_13904_433	GAAGGTGACCAAGTTCATGCTGGAGTGGAGGCCAATGAAGAAAG	GAAGGTCGGAGTCAACGGATTGGAGTGGAGGCCAATGAAGAAAT	GCTGTTGCACCAAGCCCTTGCAT
Al_BA_grs_69245_242	GAAGGTGACCAAGTTCATGCTGCCGATTAATTACTCCCCTGCG	GAAGGTCGGAGTCAACGGATTGGCCGATTAATTACTCCCCTGCT	GTGAGGATTTTGTAACTGCCACGCA
Al_BA_grs_30550_248	GAAGGTGACCAAGTTCATGCTGAACTCCCTGTCGGACCTCTC	GAAGGTCGGAGTCAACGGATTGAACTCCCTGTCGGACCTCTT	CCAGGCCCTAATGGCATTATCACAA
Al_BA_grs_33956_162	GAAGGTGACCAAGTTCATGCTCTCCAATGCTCAGATTCTCCAC	GAAGGTCGGAGTCAACGGATTCTCTCCAATGCTCAGATTCTCCAT	tTCGGTCATATCCGGAGTAATCTTGAAA
Al_BA_grs_16159_326	GAAGGTGACCAAGTTCATGCTCGTCGAGTGGGCCTTCCG	GAAGGTCGGAGTCAACGGATTGTCGTCGAGTGGGCCTTCCA	tataccctacgagtacccaatgita
Al_BA_grs_25521_213	GAAGGTGACCAAGTTCATGCTCGGTGTGAGCTCGAGAACGG	GAAGGTCGGAGTCAACGGATTGCGGTGTGAGCTCGAGAACGT	CCATATTTCCCCCTCAAAACCCCAT
Al_BA_grs_41770_204	GAAGGTGACCAAGTTCATGCTCATCATGTTGCCTGTACTACTACG	GAAGGTCGGAGTCAACGGATTCCATCATGTTGCCTGTACTACTACA	TGGGAAATACTCTTGTGAATTGTTCGGTA
Al_BA_grs_43509_155	GAAGGTGACCAAGTTCATGCTCAGTGAGTAGTTGCAGAGTGACG	GAAGGTCGGAGTCAACGGATTACAGTGAGTAGTTGCAGAGTGACA	GAGTCTATTTTTCCTTCTGTTTTCGTACTT
Al_BA_grs_25242_300	GAAGGTGACCAAGTTCATGCTCACAATGGTTCAGGTTTATTAAGTGC	GAAGGTCGGAGTCAACGGATTGTCACAATGGTTCAGGTtTATtAAGTGT	TTAGTGATTAAAGCTCTCACGAAACTTGAA
Al_BA_grs_20690_314	GAAGGTGACCAAGTTCATGCTATTGAATAATTCTTGTAAACAAAAATCACCAG	GAAGGTCGGAGTCAACGGATTCATTGAATAATTCTTGTAAACAAAAATCACCAA	CCATGTTTTCCCAACAAGACACCAATATT
Al_BA_grs_107791_242	GAAGGTGACCAAGTTCATGCTATTATGTTGGAGATGGAACTGTCC	GAAGGTCGGAGTCAACGGATTACTATTATGTTGGAGATGGAACTGTCT	CCCGCATAATTCGTGTATAAAGAGCAAAT
Al_BA_grs_38330_329	GAAGGTGACCAAGTTCATGCTATCGTGGTATCCACCGCTG	GAAGGTCGGAGTCAACGGATTGCTATCGTGGTATCCACCGCTA	CGACAAACGCGACGACAACCACAA
Al_BA_grs_29915_265	GAAGGTGACCAAGTTCATGCTATATCTATACGGCTACAACTAATACGG	GAAGGTCGGAGTCAACGGATTCTATATCTATACGGCTACAACTAATACGA	GGTACAGAGGGTTTGATGACCAACTA
Al_BA_grs_107247_238	GAAGGTGACCAAGTTCATGCTACGCTGACTCGATGCACTTTCG	GAAGGTCGGAGTCAACGGATTGACGCTGACTCGATGCACTTTCA	TCGCAGACTCGAGTGAAGACTCAT
Al_BA_grs_16672_120	GAAGGTGACCAAGTTCATGCTAATTGAAGACTCTATCAGATAATCTTAAATAC	GAAGGTCGGAGTCAACGGATTGAATTGAAGACTCTATCAGATAATCTTAAATAT	TGAGTTCTTCTTCATCCCCTAAAAGCTTA
Al_BA_grs_15840_171	GAAGGTGACCAAGTTCATGCTAAGGCGACGATGATCGACAGC	GAAGGTCGGAGTCAACGGATTGAAGGCGACGATGATCGACAGA	GGACCTTGGCCCGCACAGCAT
Al_BA_grs_37706_409	GAAGGTGACCAAGTTCATGCTGTGAGTCCAGGAGAGCACCGA	GAAGGTCGGAGTCAACGGATTGAGTCCAGGAGAGCACCGG	GCTGTGCGACTCGCCGGTGTA
Al_BA_grs_72887_279	GAAGGTGACCAAGTTCATGCTGTCGTGGCAGAGCCGGACTT	GAAGGTCGGAGTCAACGGATTCGTGGCAGAGCCGGACTC	AAAGGCCCGTTTCTCTGCCACG
Al_BA_grs_33787_381	GAAGGTGACCAAGTTCATGCTGTCATGACTCCGATCTGAGCGT	GAAGGTCGGAGTCAACGGATTGTCATGACTCCGATCTGAGCGA	aCtTTCAGATCCGGAACCATAGGTTATAT
Al_BA_grs_20427_213	GAAGGTGACCAAGTTCATGCTGTACGTGGTGAGCTGGTAGGTT	GAAGGTCGGAGTCAACGGATTACGTGGTGAGCTGGTAGGTG	agcagatgattgiccaagctagcat
Al_BA_grs_21612_226	GAAGGTGACCAAGTTCATGCTGGGCGATACTTTGGTGTATGATGA	GAAGGTCGGAGTCAACGGATTGGCGATACTTTGGTGTATGATGG	ATGAGAACCGCAAGCTTCGCATGAT
Al_BA_grs_46950_332	GAAGGTGACCAAGTTCATGCTGGAGGTTCTTGTCTTAGGCTACAT	GAAGGTCGGAGTCAACGGATTGAGGTTCTTGTCTTAGGCTACAC	CGACAGTAGGTGTATCAACATCCCAA
Al_BA_grs_53297_269	GAAGGTGACCAAGTTCATGCTGATTGACCTGGCGAGTGATGGA	GAAGGTCGGAGTCAACGGATTGACCTGGCGAGTGATGGC	GATCCAAAAGGGTCGCACCTCCAA
Al_BA_grs_42195_300	GAAGGTGACCAAGTTCATGCTGAGCATATCAATTCAGTTATCTTGGTGAT	GAAGGTCGGAGTCAACGGATTGCATATCAATTCAGTTATCTTGGTGAC	GTCCTTCTCCATAATCGAGAAGGCTT
Al_BA_grs_29391_265	GAAGGTGACCAAGTTCATGCTGACGAGGTCGGAGTCGCCA	GAAGGTCGGAGTCAACGGATTACGAGGTCGGAGTCGCCG	CGAGCAGCCAAGGAAATGAACATCAA
Al_BA_grs_62899_192	GAAGGTGACCAAGTTCATGCTGAAAACAAGATGAAACAAGTTGAGAGCAA	GaAGGTCGGAGTCAACGGATTAAACAAGATGAAACAAGTTGAGAGCAG	CCCGAGTTGTGCTTCTCAAAGCTAT
Al_BA_grs_105608_246	GAAGGTGACCAAGTTCATGCTCTCAATAAGATTGGTGTCTTGCTT	GAAGGTCGGAGTCAACGGATTCTCTCAATAAGATTGGTGTCTTGCTG	atgTagaggcanganatanagatgitggat
Al_BA_grs_62300_111	GAAGGTGACCAAGTTCATGCTCGTGGGGAAGGTACATAGTGCA	GAAGGTCGGAGTCAACGGATTGTGGGGAAGGTACATAGTGCG	GCAATGACGCCCCGTGGTTGAA
Al_BA_grs_21506_179	GAAGGTGACCAAGTTCATGCTCGAAGTTCTCGGAGATCCTGCA	GAAGGTCGGAGTCAACGGATTGAAGTTCTCGGAGATCCTGCG	GGCCCGTGCGCATGAAGCTTT
Al_BA_grs_29453_94	GAAGGTGACCAAGTTCATGCTCCACCCTTGTTGATCATATCGTGT	GAAGGTCGGAGTCAACGGATTCACCCTTGTTGATCATATCGTGC	tttatgatgccaicttgggtgtaggattt
Al_BA_grs_80443_334	GAAGGTGACCAAGTTCATGCTCAAACATATTTGCAAATAAACCATATGAAAGAT	GAAGGTCGGAGTCAACGGATTAAACATATtTGCAAATAAACCATATGAAAGAG	CTCTCGTATTGTTGTTGCACCAAACATTA

LviDovopoobuoponuvail			
LILDVOLVVLDVLVVOLVOLDLLVVOOVVV			
LIOOLOVVLVVLILVVIDİODOVVVVYDV			
			$0^{081} 955601^{-s .18}$
เvเ.L.			

	Al_BA_grs_83796_309	GAAGGTGACCAAGTTCATGCTGAAGAGATGAAAGGCCAGACTACAA	GAAGGTCGGAGTCAACGGATTAAGAGATGAAAGGCCAGACTACAG	CATCTGGATGATCCTGACTCACGAA
	A1_BA_grs_27756_174	GAAGGTGACCAAGTTCATGCTGAAAGAATCCAACGGTCAGTCTTGT	GAAGGTCGGAGTCAACGGATTAAAGAATCCAACGGTCAGTCTTGG	GGTTTAAAAGAACTCCTTGAGAGGAA
	Al_BA_grs_49498_297	GAAGGTGACCAAGTTCATGCTCTGCTTGTCCAAGTAGATTTGTGTTT	GAAGGTCGGAGTCAACGGATTCTGCTTGTCCAAGTAGATTTGTGTTC	CCTGTCACCTATAGCAGAAAAATACTCAA
	Al_BA_grs_15999_324	GAAGGTGACCAAGTTCATGCTCCTAAGCTTGATTGCGGACCGT	GAAGGTCGGAGTCAACGGATTCTAAGCTTGATTGCGGACCGC	GCTATTGGAGAGGTACCGAGTACAA
	Al_BA_grs_31313_342	GAAGGTGACCAAGTTCATGCTCCGTTTATCCAAGTACATTAGTGAGAAA	GAAGGTCGGAGTCAACGGATTCCGTTTATCCAAGTACATTAGTGAGAAT	GTCTTGTTAGTCCTTTCTATGAACTTCTTT
	Al_BA_grs_18812_249	GAAGGTGACCAAGTTCATGCTCCCTGTTCTGGCGGTATTCGTT	GAAGGTCGGAGTCAACGGATTCCTGTTCTGGCGGTATTCGTC	ACGATGGAAACACGGGACCAAGTTA
	Al_BA_gr_109268_225	GAAGGTGACCAAGTTCATGCTCATAATCTACAACTCAAATTCTTGAAGTGA	GAAGGTCGGAGTCAACGGATtATAATCTACAACTCAAATTCTTGAAGTGG	GGAAAGACCATAAGCCGAGACTGAT
	Al_BA_grs_39719_264	GAAGGTGACCAAGTTCATGCTCAACCAAGGCTTATCTAACCAAGCT	GAAGGTCGGAGTCAACGGATTCAACCAAGGCTTATCTAACCAAGCA	gTaCaAGATGGATTAAGGCTAAGCCAT
	Al_BA_grs_54156_270	GAAGGTGACCAAGTTCATGCTATTAAAACTAATTAAATTACTGCAGTAACCACA	GAAGGTCGGAGTCAACGGATTAAAACTAATTAAATTACTGCAGTAACCACG	GTAGAATCATCTTATCAGAATAGATCCAA
	Al_BA_grs_42747_240	GAAGGTGACCAAGTTCATGCTATACGTGTGAAATCAGAGGCGCT	GAAGGTCGGAGTCAACGGATTACGTGTGAAATCAGAGGCGCC	TACCATAACAAAAAAAAATCCTTGCAGTAT
*	Al_BA_grs_48442_249	GAAGGTGACCAAGTTCATGCTAGTTCTATGGAAGGATGTGGAGGT	GAAGGTCGGAGTCAACGGATTGTTCTATGGAAGGATGTGGAGGC	TAAACTCACGGGAGGAAACCAGATTT
*	Al_BA_grs_66238_275	GAAGGTGACCAAGTTCATGCTAGCATCCAGCTGAAAGGATACCTA	GAAGGTCGGAGTCAACGGATTGCATCCAGCTGAAAGGATACCTG	TGCTGAGAGGGAGAAGTTGTTCGAA
*	Al_BA_grs_107263_216	GAAGGTGACCAAGTTCATGCTACTGCTCATGTCGGCAGACGA	GAAGGTCGGAGTCAACGGATTCTGCTCATGTCGGCAGACGG	CGACCCGGCAAGCGTCATAGAT
	Al_BA_grs_37795_404	GAAGGTGACCAAGTTCATGCTACACTGGAATACATGTATTATTTCAACCA	GAAGGTCGGAGTCAACGGATTCACTGGAATACATGTATTATTTCAACCG	CTTGGAGATATGCCACTACAACTTCTTTA
	Al_BA_grs_86450_346	GAAGGTGACCAAGTTCATGCTAATAACGACAAGACAATCAAGCATGCT	GAAGGTCGGAGTCAACGGATTAACGACAAGACAATCAAGCATGCC	CTTGCCATGCTACATTATTGCCATGTAAA
	Al_BA_grs 55181_284	GAAGGTGACCAAGTTCATGCTAACCCTCTTTGGGTAATGATCCCT	GAAGGTCGGAGTCAACGGATTAACCCTCTTTGGGTAATGATCCCA	CCGAGATAGGCCAAGCTTGGCAA
*	Al_BA_grs_104898_197	GAAGGTGACCAAGTTCATGCTAACAAGATTGGTGTGTTGCTGGGA	GAAGGTCGGAGTCAACGGATTCAAGATTGGTGTGTTGCTGGGC	TTATGCAGAGGCAAGAAGTAAAGATGGTA
*	A1_BA_grs_21636_110	GAAGGTGACCAAGTTCATGCTGAACGAAATTTGGTCAAATTTTGAGTCG	GAAGGTCGGAGTCAACGGATTGAACGAAATTTGGTCAAATTTTGAGTCC	CTCTAACATCGCACCGCCTTCAAAT
*	Al_BA_grs_26396_267	GAAGGTGACCAAGTTCATGCTTGTTGAATTGTTTCGTTGATTTTGAATGC	GAAGGTCGGAGTCAACGGATTTTTGTTGAATTGTTTCGTTGATTTTGAATGT	AAAAAAGAGCAGAGGCGCTCGATGA
*	Al_BA_grs_24713_153	GAAGGTGACCAAGTTCATGCTTGGGTAATACACTTAAGGAAACTTGC	GAAGGTCGGAGTCAACGGATTCTTGGGTAATACACTTAAGGAAACTTGT	CAGTTGTTGGGCCTCCCAAGTGTA
	Al_BA_grs 55489_309	GAAGGTGACCAAGTTCATGCTGTTTTTCACTGTTTACCTATATGGTAACG	GAAGGTCGGAGTCAACGGATTGTTTTTCACTGTTTACCTATATGGTAACA	CACTGTATAAACTCCTGTTTGCTCTATCTT
	Al_BA_grs_68273_327	GAAGGTGACCAAGTTCATGCTGTCTCACGAATGCTATATCATCAATG	GAAGGTCGGAGTCAACGGATTAATGTCTCACGAATGCTATATCATCAATA	GGCAAGTTAATGATGCAAACTATGTACGAA
	Al_BA_grs_76755_240	GAAGGTGACCAAGTTCATGCTGTATTGTCACAAGAGCTTCCAAGTAC	GAAGGTCGGAGTCAACGGATTGTATTGTCACAAGAGCTTCCAAGTAA	TGAAAGAGCAAGTGGTCCTTATGTTTGTT
*	Al_BA_grs 52899_364	GAAGGTGACCAAGTTCATGCTGGTTTGGCATGGTTGCGACAG	GAAGGTCGGAGTCAACGGATTGGTTTGGCATGGTTGCGACAT	TATTCCTTGCACTGAGCAAGAACATGAT
	Al_BA_grs_23029_265	GAAGGTGACCAAGTTCATGCTGCCTCTGCCAGTACTGGACAG	GAAGGTCGGAGTCAACGGATTGCCTCTGCCAGTACTGGACAT	GCATCATCTCCCTCAAGGCCTAAT
*	Al_BA_grs_51174_295	GAAGGTGACCAAGTTCATGCTGCACTGTCAGTCACGTATTTGCC	GAAGGTCGGAGTCAACGGATTGCACTGTCAGTCACGTATTTGCT	ACCCGACACTTTGCCGAGTATCTAA
	Al_BA_grs_45013_235	GAAGGTGACCAAGTTCATGCTGAGCTTCATGATGAGTGTTGGTAC	GAAGGTCGGAGTCAACGGATtTGAGCTTCATGATGAGTGTTGGTAA	GGCCAAGGCCACCTTATATAAGAGTA
*	Al_BA_gr_104239_330	GAAGGTGACCAAGTTCATGCTGAACTCACATAAGAAGAATGGTGAGG	GAAGGTCGGAGTCAACGGATTAGAACTCACATAAGAAGAATGGTGAGA	GCTTTATTTATAAAGCAGGACGAAAGCCTA
	A1_BA_grs_31972_334	GAAGGTGACCAAGTTCATGCTGAACTATTTCTCTAATTGTAGTACCAAATATG	GAAGGTCGGAGTCAACGGATTAGAACTATTTCTCTAATTGTAGTACCAAATATT	CGATTGGAATCGACGTCATGTTTAACTAA
*	Al_BA_grs_42785_298	GAAGGTGACCAAGTTCATGCTCGTTATTGTTGAGGTTGAGGAGC	GAAGGTCGGAGTCAACGGATTGTCGTTATTGTTGAGGTTGAGGAGA	CCACCATAATGGGGACCAACAAGTT
	Al_BA_grs_33681_351	GAAGGTGACCAAGTTCATGCTCGAGCAATCCCTGACATCACC	GAAGGTCGGAGTCAACGGATTGCGAGCAATCCCTGACATCACT	GCAGAGAAGCTCAACGTGGTTGTAA
	Al_BA_grs 57629_198	GAAGGTGACCAAGTTCATGCTCCGTCTGCCGACATAAAGCAG	GAAGGTCGGAGTCAACGGATTGCCGTCTGCCGACATAAAGCAA	AGGTTACAGAGAGATATGCCGGCAA
	A1_BA_grs_30011_326	GAAGGTGACCAAGTTCATGCTCCCGTTGGCAGTTCTCTATGC	GAAGGTCGGAGTCAACGGATTCCCCGTTGGCAGTTCTCTATGA	CTACTCAACTTCAGTCATAAGTAAGCTCTT
	A1_BA_grs_11721_341	GAAGGTGACCAAGTTCATGCTCCAGATACAGTGGAAGCCCAC	GAAGGTCGGAGTCAACGGATTGTCCAGATACAGTGGAAGCCCAT	GTCCGTAGGCCACTCGAAGTCTT
*	Al_BA_grs_29686_290	GAAGGTGACCAAGTTCATGCTCACATCGCTGCACTCGCCG	GAAGGTCGGAGTCAACGGATTCTCACATCGCTGCACTCGCCA	AGTGGTGACCTTCTTGCTGCCG
	Al_BA_grs_108332_177	GAAGGTGACCAAGTTCATGCTCACACTAAAGAGGTTCACAATCGG	GAAGGTCGGAGTCAACGGATTGACACACTAAAGAGGTTCACAATCGT	GTGTTGATGGCGAGCAAGATGATGAT

Al_BA_grs 55725_301	GaAGGTGACCAAGTTCATGCTATAATCACATTATTATGAAAATAGTGTTTTCTG	GAAGGTCGGAGTCAACGGATTATAATCACATTATTATGAAAATAGTGTTTTCTA	tgcanatccagtgitctcatcgect
Al_BA_grs_14646_143	GAAGGTGACCAAGTTCATGCTAAGCCAAGACTAATCCGTTGGATTC	GAAGGTCGGAGTCAACGGATTATAAGCCAAGACTAATCCGTTGGATTA	TTCTTGCCTCTGCATAATCTACAACTCAA
Al_BA_grs_15500_194	GAAGGTGACCAAGTTCATGCTAAATCTAATCTTGGAGATTGCGGGC	GAAGGTCGGAGTCAACGGATTAAAAATCTAATCTTGGAGATTGCGGGA	CGGAAGGCTTTAGCAACCAACGAT
Al_BA_grs_15562_330	GAAGGTGACCAAGTTCATGCTTTTCATGAGTTCTTCTTCTTCTTTTCCTA	GAAGGTCGGAGTCAACGGATTCATGAGTTCTTCTTCTTCTTTTCCTG	ACCACCCCCAGAATTGAAGACTCTA
Al_BA_grs_47963_340	GAAGGTGACCAAGTTCATGCTTTGGGAAACCTGAGTGGCACA	GAAGGTCGGAGTCAACGGATTTGGGAAACCTGAGTGGCACC	CAAGTATCATTTCATGACTGAATGATCAAA
Al_BA_grs_82362_346	GAAGGTGACCAAGTTCATGCTTGTCTATTGGATATTGATGCTTTGTTGAT	GAAGGTCGGAGTCAACGGATTGTCTATTGGATATTGATGCTtTGTTGAA	GGAAATTGTTCAAACTATTTTTTGTTGCAA
Al_BA_grs_17512_343	GAAGGTGACCAAGTTCATGCTTGGAAACAAGTATATCGAGGCACA	GAAGGTCGGAGTCAACGGATTGGAAACAAGTATATCGAGGCACG	GTATACCTTTTCACCAACTTTGTGTTCTTT
Al_BA_grs_37686_300	GAAGGTGACCAAGTTCATGCTTCTCCTCCCTTCAAAGTTTCATCAT	GAAGGTCGGAGTCAACGGATTCTCCTCCCTTCAAAGTTTCATCAC	GTCGGCTGAAGGAAAGCTTACCAAT
Al_BA_grs_53832_345	GAAGGTGACCAAGTTCATGCTTATAGTGATTTATACCAGGAGTAGGATTT	GAAGGTCGGAGTCAACGGATTAGTGATtTATACCAGGAGTAGGATTC	CGAGGTAACACATCTTACCCAGGTT
Al_BA_grs_17654_297	GAAGGTGACCAAGTTCATGCTTAACTGTAGTTACAAATTTTCATCCTCCA	GAAGGTCGGAGTCAACGGATTACTGTAGTTACAAATTTTCATCCTCCG	GCAAAACACAGTTGGTTACCCTACTTAAA
Al_BA_grs_4743_286	GAAGGTGACCAAGTTCATGCTGTTTAGAGAGGTGGAGGAAGGCA	GAAGGTCGGAGTCAACGGATTTAGAGAGGTGGAGGAAGGCG	ACCTGGGTAAGCTGTGTTACCTCAT
Al_BA_grs_19468_239	GAAGGTGACCAAGTTCATGCTGTACGGGAAACCTCTCGTCAGA	GAAGGTCGGAGTCAACGGATTACGGGAAACCTCTCGTCAGG	CCTTCCTTTCTGGCTTTAATGTACCAATT
Al_BA_grs_46375_216	GAAGGTGACCAAGTTCATGCTGGGTCGGCTGTCCGAGT	GAAGGTCGGAGTCAACGGATTGGGTCGGCTGTCCGAGC	CTCACCCCGAAGAACCGAGCTA
Al_BA_grs_27368_222	GAAGGTGACCAAGTTCATGCTGGGACCACTTCAAAGGTCATGCA	GAAGGTCGGAGTCAACGGATTGGACCACTTCAAAGGTCATGCG	GGCGAGATTAAACCTCGACATCAATAATT
Al_BA_gr_ 87512 _320	GAAGGTGACCAAGTTCATGCTGGCAATGATGCGATCCTTTTTGTCAT	GAAGGTCGGAGTCAACGGATTGCAATGATGCGATCCTTTTTGTCAC	CGACCCTCGCCATACTTGCGAA
Al_BA_grs_76379_100	GAAGGTGACCAAGTTCATGCTGGAATGGACTGGATGACTAAGCAA	GAAGGTCGGAGTCAACGGATTGAATGGACTGGATGACTAAGCAC	AGTGAGACAGTATGGTTTGCACAATCTAT
Al_BA_grs_5883_168	GAAGGTGACCAAGTTCATGCTGCGAAATCATCACACGCTGCAGT	GAAGGTCGGAGTCAACGGATTCGAAATCATCACACGCTGCAGC	ACTACGAATGTGAGCGCTACACGTT
Al_BA_grs_106036_155	GAAGGTGACCAAGTTCATGCTGCCGAGCAGCTTCATCACGA	GAAGGTCGGAGTCAACGGATTGCCGAGCAGCTTCATCACGG	GCGGCCATGGCGCAGAGCT
Al_BA_grs_106092_190	GAAGGTGACCAAGTTCATGCTGCCATTCATATATCCAATATGACAAGCAT	GAAGGTCGGAGTCAACGGATTCCATTCATATATCCAATATGACAAGCAC	CTTAAGGAATAGTCGATCCCATTTGTGAA
Al_BA_grs_49262_176	GAAGGTGACCAAGTTCATGCTGCCACCAATTTAGCCTGGCACA	GAAGGTCGGAGTCAACGGATTCCACCAATTTAGCCTGGCACG	ATGGAGGCCTCAGCAAATCTGTCTT
Al_BA_grs_81051_272	GAAGGTGACCAAGTTCATGCTGCCAAGAAGATCTACAACAAGGCT	GAAGGTCGGAGTCAACGGATTCCAAGAAGATCTACAACAAGGCC	TCATGAGAGATTCAGGGGCGAGAA
Al_BA_grs_50029_251	GAAGGTGACCAAGTTCATGCTGAAATCGGTACCACTTTCTGGCA	GAAGGTCGGAGTCAACGGATTGAAATCGGTACCACTTTCTGGCC	GGAGCAGGGAGGTGGTGAGATA
Al_BA_grs_13399_237	GAAGGTGACCAAGTTCATGCTGAAAGAGCAATCAAAGCAAAATCTTTTTGA	GAAGGTCGGAGTCAACGGATTAAAGAGCAATCAAAGCAAAATCTTTTTGG	Ctttgattigcgicatccttttiagcti
Al_BA_grs_49013_332	GAAGGTGACCAAGTTCATGCTCGTGGCTCAGGATTTGTTTTTAAAAACAT	GAAGGTCGGAGTCAACGGATTGTGGCTCAGGAtTTGTTTTTAAAAACAG	GGTGTGTATCAAAAGTTATGAATTTTGCAA
Al_BA_grs_57545_273	GAAGGTGACCAAGTTCATGCTCGGTCAAGCTTTCCGACTTGCAT	GAAGGTCGGAGTCAACGGATTGGTCAAGCTTTCCGACTTGCAC	CTTCCAGTCCTCGATAAGCTTTGGAA
Al_BA_grs_28284_295	GAAGGTGACCAAGTTCATGCTCCCAATGCACTTGGCCTCCA	GAAGGTCGGAGTCAACGGATTCCCAATGCACTTGGCCTCCG	ATCTGGAGTGTTATGGATCTTGATGAGAA
Al_BA_grs_20229_336	GAAGGTGACCAAGTTCATGCTCCATAACCATTATCAACACCAAGACAAT	GAAGGTCGGAGTCAACGGATTCATAACCATTATCAACACCAAGACAAG	AGTAGTTTAGGTATAATTTTTATCCCTCTT
Al_BA_grs_108819_315	GAAGGTGACCAAGTTCATGCTCAGGCCATCCAAGGGTGTATCA	GAAGGTCGGAGTCAACGGATTAGGCCATCCAAGGGTGTATCG	AGGTGAACTCGCCCCTCTCCTT
Al_BA_grs_41506_242	GAAGGTGACCAAGTTCATGCTCAAGTTGTCCACCTCTGAGCA	GAAGGTCGGAGTCAACGGATTCAAGTTGTCCACCTCTGAGCG	GAGCCTCGGGGCTCCACCAA
Al_BA_grs_33475_433	GAAGGTGACCAAGTTCATGCTCAAGTACATCCAGAATTTCACAATCATCA	GAAGGTCGGAGTCAACGGATTAGTACATCCAGAATTTCACAATCATCG	CACACTCGAAACCCCTTACGAGATT
Al_BA_grs_77365_188	GAAGGTGACCAAGTTCATGCTCAACAAACATAAGGACCACTTGCTCT	GAAGGTCGGAGTCAACGGATTCAACAAACATAAGGACCACTTGCTCA	GGAAGCAAAAACAACCAGGGTGCAA
Al_BA_grs_104834_200	GAAGGTGACCAAGTTCATGCTCAAATCACCTTGAAACGATATAGCATCT	GAAGGTCGGAGTCAACGGATTAAATCACCTTGAAACGATATAGCATCC	CTTCAGGGCTCTTAGCTCAATTTGCTT
Al_BA_grs_26569_191	GAAGGTGACCAAGTTCATGCTATTCTTGAAGTAAAAGGATCCAACGGT	GAAGGTCGGAGTCAACGGATTCTTGAAGTAAAAGGATCCAACGGA	GTTTAAAAAGAACTCCTCGAGAGGAAGTT
Al_BA_grs_87873_178	GAAGGTGACCAAGTTCATGCTAGATGCTCATTGTCTGCTTGCCTTA	GAAGGTCGGAGTCAACGGATTATGCTCATTGTCTGCTTGCCTTG	CCCCTTTGCACATGATATAGGAGCTA
Al_BA_grs_38692_386	GAAGGTGACCAAGTTCATGCTAAAGCTCGAATTGATAATAAGAAGGAGA	GAAGGTCGGAGTCAACGGATTAAAGCTCGAATTGATAATAAGAAGGAGT	GGCCTCTTATTTAGTTTTGCAAAGTGGAA
Al_BA_grs_22275310	GAAGGTGACCAAGTTCATGCTAAAATTCTTGAAGTAAAAGGATCCAACGA	GAAGGTCGGAGTCAACGGATTAATTCTTGAAGTAAAAGGATCCAACGG	CAGATCGTGATGGTTTAAAAGAACTCCTT

Al_BA_grs_22020_338	GAAGGTGACCAAGTTCATGCTGAAAATTCCACTCAAGATTAAAATTTTCATGTA	GAAGGTCGGAGTCAACGGATTAAAATTCCACTCAAGATTAAAATTTTCATGTG	Cattegrangang iactitgitatttagta
Al_BA_grs_108511_161	GAAGGTGACCAAGTTCATGCTGAAAAGAATCCAAAGGATCAGTCTTGA	GAAGGTCGGAGTCAACGGATTAAAAGAATCCAAAGGATCAGTCTTGG	CTCTTGTTATAAATTTTGTTCCTATtTAGT
Al_BA_grs_46464_325	GAAGGTGACCAAGTTCATGCTCTCCTACATACAACAAGAGACCGT	GAAGGTCGGAGTCAACGGATTCCTACATACAACAAGAGACCGG	GCTCAAGTGGAATGCTCAAGGCAAA
Al_BA_grs_26548_143	GAAGGTGACCAAGTTCATGCTCGTTTACGAGAATTATTAAATGAATTAAGGTT	GAAGGTCGGAGTCAACGGATTCGTTTACGAGAATTATTAAATGAATTAAGGTC	CAACAAAGACTTCTTCTCTTTTAGAGGAAT
Al_BA_grs_43072_300	GAAGGTGACCAAGTTCATGCTCGCCCCTGCGCACAACACTA	GAAGGTCGGAGTCAACGGATTGCCCCTGCGCACAACACTG	CGCAGGTCGGTGTCGCGCAT
Al_BA_grs_77838_125	GAAGGTGACCAAGTTCATGCTCCTAATTGCTGGTGATGATAATTTCTCA	GAAGGTCGGAGTCAACGGATTCTAATTGCTGGTGATGATAATTTCTCG	CCATATATAATGCAGAGGTCAGGGAAATA
Al_BA_grs_71750_324	GAAGGTGACCAAGTTCATGCTCCGCAACCTGAGTCGAACCAT	GAAGGTCGGAGTCAACGGATTCCGCAACCTGAGTCGAACCAC	CGAATACAGAAGCAAAAGAAGAGACGAAA
Al_BA_grs_48295_384	GAAGGTGACCAAGTTCATGCTCCGAGACCACCTTGGTGACCA	GAAGGTCGGAGTCAACGGATTCGAGACCACCTTGGTGACCG	GTGGTCCTCGGTGAAGGTGCAA
Al_BA_grs_54151_274	GAAGGTGACCAAGTTCATGCTCCCTGCAAACTGTCCATGTGAGT	GAAGGTCGGAGTCAACGGATTCCTGCAAACTGTCCATGTGAGC	TCCTACTTCTTCAAGGGCCGTCAAT
Al_BA_grs_39304_279	GAAGGTGACCAAGTTCATGCTCCACGCGCAATAGTAAATAAAGT	GAAGGTCGGAGTCAACGGATTCTCCACGCGCAATAGTAAATAAAGC	CTAATGTAATGCATGCATGCAATGCTCAA
Al_BA_grs_104526_322	GAAGGTGACCAAGTTCATGCTCCACACCACAAGCTTATTGATTACATT	GAAGGTCGGAGTCAACGGATTCACACCACAAGCTTATTGATTACATC	TCTTGCATGTGTGCAACTTTAACTGACA
Al_BA_grs_56627_343	GAAGGTGACCAAGTTCATGCTCATTTTGACTGAGAGTAAAATTATGCATTTAAA	GAAGGTCGGAGTCAACGGATTCATTTTGACTGAGAGTAAAATTATGCATTTAAT	ATGAAACAATGATATGGTAACACTCGCATA
Al_BA_grs_22311_214	GAAGGTGACCAAGTTCATGCTCACCAGGACTAAAGTTCCTCTCAA	GAAGGTCGGAGTCAACGGATTCACCAGGACTAAAGTTCCTCTCAT	GCAGTGTCGATGTTTGCCCAGCAA
Al_BA_grs_18921_322	GAAGGTGACCAAGTTCATGCTCAATCATCAGCATCCAATGGCTCTTT	GAAGGTCGGAGTCAACGGATTAATCATCAGCATCCAATGGCTCTTC	GAACTTTCAGAACACCAATCCACCCAT
Al_BA_grs_32531_244	GAAGGTGACCAAGTTCATGCTCAATATATAGGGGAAACTCCACCAAATA	GAAGGTCGGAGTCAACGGATTAATATATAGGGGAAACTCCACCAAATC	GGAGAGACTCCACATAATTATGTGCATAA
Al_BA_grs_25202_404	GAAGGTGACCAAGTTCATGCTCAAGGGAGAAGAAGTCTATGTTGTTA	GAAGGTCGGAGTCAACGGATTCAAGGGAGAAGAAGTCTATGTTGTTG	GCACTTACCATTTGCTTATTCGGGGAT
Al_BA_grs_38572_283	GAAGGTGACCAAGTTCATGCTATTACCGAGATTATCCCTTCTCACATT	GAAGGTCGGAGTCAACGGATTACCGAGATTATCCCTTCTCACATA	TCGGGTTGTTCAGTCTGCTAATTTTGTTT
Al_BA_grs_108554_271	GAAGGTGACCAAGTTCATGCTATAGCAATGCTCCCCCTGACTA	GAAGGTCGGAGTCAACGGATTATAGCAATGCTCCCCCTGACTG	CCATCTACTACCTATCGTGCATGCTT
Al_BA_grs_38812_220	GAAGGTGACCAAGTTCATGCTATACGGCCATAATTTTAATTTCCGCCA	GAAGGTCGGAGTCAACGGATTACGGCCATAATTTTAATTTCCGCCG	CAATTTCTTTCCCAGGTACGGAGAGTT
Al_BA_grs_28723_184	GAAGGTGACCAAGTTCATGCTATAATTTTGTCAAGTTCTCAAGGATCCTA	GAAGGTCGGAGTCAACGGATTAATTTTGTCAAGTTCTCAAGGATCCTG	TGAAAAGCAGCGAGGGAGATAGCAT
Al_BA_grs_110381_96	GAAGGTGACCAAGTTCATGCTAGTTTCTTATCTGCATTTCTACGGTGT	GAAGGTCGGAGTCAACGGATTGTTTCTTATCTGCATTTCTACGGTGC	GGAGAAATGAAGAAAAAGTC
Al_BA_grs_15007_124	GAAGGTGACCAAGTTCATGCTAGGTCCCACCTTTATCGAAGAACT	GAAGGTCGGAGTCAACGGATTAGGTCCCACCTTTATCGAAGAACA	CCTCGCAACAACTATAGGGGATCAA
Al_BA_grs_70372_127	GAAGGTGACCAAGTTCATGCTAGGACGATGAGATATGTGAGGTCT	GAAGGTCGGAGTCAACGGATTGGACGATGAGATATGTGAGGTCC	GCCTGGAAAGCATTGCCGAAGATAT
Al_BA_grs_75416_305	GAAGGTGACCAAGTTCATGCTAGCATCTGGATGATCCTGACTCAT	GAAGGTCGGAGTCAACGGATTGCATCTGGATGATCCTGACTCAC	CGAAAGGCCAGATTACAGGTATGGTT
Al_BA_grs_65058_130	GAAGGTGACCAAGTTCATGCTAGCAACACCATCAGATGCATGCT	GAAGGTCGGAGTCAACGGATTGCAACACCATCAGATGCATGCG	GTTGGAGACATCCGCTAACTCTGTA
Al_BA_grs_45261_178	GAAGGTGACCAAGTTCATGCTACTGCCACATGGCTATCGTAAAGAA	GAAGGTCGGAGTCAACGGATTGCCACATGGCTATCGTAAAGAG	GatGAGATTATTCGGCACTTATATTTTATT
Al_BA_grs_32215_258	GAAGGTGACCAAGTTCATGCTACTCGCCAAGTCAACTTGGCGA	GAAGGTCGGAGTCAACGGATTCTCGCCAAGTCAACTTGGCGC	CACTGCGGTACTCAGTGGTGGAA
Al_BA_grs_54474_354	GAAGGTGACCAAGTTCATGCTACTCAGGATGGGGAGGAGAGT	GAAGGTCGGAGTCAACGGATTCTCAGGATGGGGAGGAGAGC	TCTTCTTCTTTCCTGGAGCGGCAAT
Al_BA_grs_34366_403	GAAGGTGACCAAGTTCATGCTACGGATCCTCTGTTCTATCCCTTA	GAAGGTCGGAGTCAACGGATTCGGATCCTCTGTTCTATCCCTTG	CCTGATGGGTATGACATTAACCCCAT
Al_BA_grs_81977_212	GAAGGTGACCAAGTTCATGCTACATTTTTATCTCTTCTTATTCCAAATTGTCA	GAAGGTCGGAGTCAACGGATTCATTTTTATCTCTTCTTATTCCAAATTGTCC	CAGTGAGAGCAGCGTTTTTTAGATGTAAT
Al_BA_grs_89672_241	GAAGGTGACCAAGTTCATGCTACAATACAAGATACTTGGAAGCTCTCA	GAAGGTCGGAGTCAACGGATTCAATACAAGATACTTGGAAGCTCTCG	ATGTTTTGTGTGCAACCATAATGCCACTA
Al_BA_grs_70258_392	GAAGGTGACCAAGTTCATGCTAAGTGCATGGTGGATTGTGGAAGT	GAAGGTCGGAGTCAACGGATTGTGCATGGTGGATTGTGGAAGC	tTCATCTTGTGAGTGTATCCAGGTACAT
Al_BA_grs_103686_196	GAAGGTGACCAAGTTCATGCTAAGGGTGAGCTAAGTTGGCTTGAT	GAAGGTCGGAGTCAACGGATTGGGTGAGCTAAGTTGGCTTGAC	TTGGTTTCGGACCGTGAAGCTGAAA
Al_BA_grs_107365_310	GAAGGTGACCAAGTTCATGCTAAGAATCAAAAGTCTAAGAGTAAAAGGTAATA	GAAGGTCGGAGTCAACGGATTGAATCAAAAGTCTAAGAGTAAAAGGTAATG	ATGACCGAAATTGTACGAGTACTCAAGTA
Al_BA_grs_57497_370	GAAGGTGACCAAGTTCATGCTAACCCCTGACCAAAGTTTATCACCA	GAAGGTCGGAGTCAACGGATTCCCCTGACCAAAGTTTATCACCG	GTCAATTAGCGCGGTCTGTGATGAA
Al_BA_grs_34495_308	GAAGGTGACCAAGTTCATGCTAAAATTTCCCAAGTCACTAAACTGGAAAA	GAAGGTCGGAGTCAACGGATTAATTTCCCAAGTCACTAAACTGGAAAG	TGGCCCACCAATAATTATCTCAATTCGTT

Al_BA_grs_24003_202	GAAGGTGACCAAGTTCATGCTTATTTGGACAATAATGTTGAGCTACTTTG	GAAGGTCGGAGTCAACGGATTATTTGGACAATAATGTTGAGCTACTTTC	AGAAATACCGACTGGACAAGCATAGATTT
Al_BA_grs_82447_112	GAAGGTGACCAAGTTCATGCTGGTGGATCCATATGTGCGTG	GAAGGTCGGAGTCAACGGATTCTGGTGGATCCATATGTGCGTC	ACATATGGATCCACCAGAGTTAATTGCTT
Al_BA_grs_60346_283	GAAGGTGACCAAGTTCATGCTGAAACCAGGATAACCATGGCTCC	GAAGGTCGGAGTCAACGGATTGAAACCAGGATAACCATGGCTCG	GCATCTAATGGCTCTTCAGACTTACTAAA
Al_BA_grs_72874_297	GAAGGTGACCAAGTTCATGCTACCGAAAACATCAGGCACCTGC	GAAGGTCGGAGTCAACGGATTACCGAAAACATCAGGCACCTGG	CTTTCCTTGATGATACTGGGATGGGAT
Al_BA_grs_11463_236	GAAGGTGACCAAGTTCATGCTAAGCCCGAGGAAGATGATCCTC	GAAGGTCGGAGTCAACGGATTAAGCCCGAGGAAGATGATCCTG	CTTCATCCCCTACCAAAATCTCCTCAT
Al_BA_grs_87637_89	GAAGGTGACCAAGTTCATGCTTTATTTCTCCAATAACTGTCAAGGCG	GAAGGTCGGAGTCAACGGATTCTTTTATTTCTCCAATAACTGTCAAGGCA	aACACATCATCAATGCTAAAGAACAGATAT
Al_BA_grs_29681_335	GAAGGTGACCAAGTTCATGCTTTATGAAGAACTTCGCAACAACTTAC	GAAGGTCGGAGTCAACGGATTACTTTATGAAGAACTTCGCAACAACTTAA	aCaAtttantantagtctctaccggitcaa
Al_BA_grs_36345_222	GAAGGTGACCAAGTTCATGCTTACTACCTTAAATCCAAAAATTATCGTAATG	GAAGGTCGGAGTCAACGGATTGTtactaccttanatccananattatcgtanta	GACAAGTACTCAGTAACGAATCTGGTAAT
Al_BA_grs_16864_246	GAAGGTGACCAAGTTCATGCTTAAGCCAAACCGGTCGGTTGG	GAAGGTCGGAGTCAACGGATTGTTAAGCCAAACCGGTCGGTTGA	CTCTCGGTCAGAAGCAGTTGGTTT
Al_BA_grs_110839_129	GAAGGTGACCAAGTTCATGCTGTTACCGCAAGGAGGAACATTGG	GAAGGTCGGAGTCAACGGATTATGTTACCGCAAGGAGGAACATTGT	ATTTGTCAAGCCAAGTCAAGTGGATTATAT
Al_BA_grs_30486_344	GAAGGTGACCAAGTTCATGCTGTGACATCTTGAAATAGTCGATGAGG	GAAGGTCGGAGTCAACGGATTAGTGACATCTTGAAATAGTCGATGAGA	GTCGCCAGTCCAGGGGAGCTT
Al_BA_grs_27764_303	GAAGGTGACCAAGTTCATGCTGTCTACGCACTTCTATTCTTGTAGAC	GaAGGTCGGAGTCAACGGATTGTCTACGCACTTCTATTCTTGTAGAT	GCTACTGTTCTACAAACCTCTGCACTT
Al_BA_grs_29207_269	GAAGGTGACCAAGTTCATGCTGGTTTTATATTCTTGAGTATTTTGCTGC	GAAGGTCGGAGTCAACGGATTGTGGTTTTATATTCTTGAGTATTTTGCTGA	GAGGCCTAAACATGCATCAAAACAAATTTT
Al_BA_grs_38319_99	GAAGGTGACCAAGTTCATGCTGGTTCTATCGTGTATGCATGAAGG	GAAGGTCGGAGTCAACGGATTAATGGTTCTATCGTGTATGCATGAAGA	TATCGCCCCAAGATTATCTGGCCTT
Al_BA_grs_31368_179	GAAGGTGACCAAGTTCATGCTGGTGAAGCATACGCTTTGGTTCG	GAAGGTCGGAGTCAACGGATTGGTGAAGCATACGCTTTGGTTCA	AGGTTGGTTCCAATCGAGGGTGTT
Al_BA_grs_71867_257	GAAGGTGACCAAGTTCATGCTGGGAGATGATGGCTCAATGCAC	GAAGGTCGGAGTCAACGGATTATAGGGAGATGATGGCTCAATGCAT	aCGagctctacatcancactgccat
Al_BA_grs_15779_266	GAAGGTGACCAAGTTCATGCTGGCTTCATAAAGTCCCCAGTCG	GAAGGTCGGAGTCAACGGATTAAAGGCTTCATAAAGTCCCCAGTCA	CTGCAGGGTATACCCATGTCAGTA
Al_BA_grs_44822_218	GAAGGTGACCAAGTTCATGCTGGATGTTATCGACACACAGTATGATG	GAAGGTCGGAGTCAACGGAtTGGATGTtatcgacacacagtatgata	GCGCTGGTCGCGCACCCTA
Al_BA_grs_33630_324	GAAGGTGACCAAGTTCATGCTGGAGCTCAGGTGATGGTCAGC	GAAGGTCGGAGTCAACGGATTGGAGCTCAGGTGATGGTCAGT	GTCGACTTCATCATTCACCCCCAT
Al_BA_grs_11756_153	GAAGGTGACCAAGTTCATGCTGCAAGAGATCATCTACATCAACCAC	GAAGGTCGGAGTCAACGGATTGGCAAGAGATCATCTACATCAACCAT	ACATACCCTTGAAGACTGACAAAGCTTAA
Al_BA_grs_43513_297	GAAGGTGACCAAGTTCATGCTGAGTCCCGAGGGCTACTGAC	GAAGGTCGGAGTCAACGGATTGGAGTCCCGAGGGCTACTGAT	CTTAGGGTAAATAATCATAGGGACCGATA
Al_BA_grs_71868_375	GAAGGTGACCAAGTTCATGCTGAGGGATAATGTTCCCACAAACAAAC	GAAGGTCGGAGTCAACGGATTAGAGGGATAATGTTCCCACAAACAAAT	actgatcatattegtcgicctigacgat
Al_BA_grs_11718_249	GAAGGTGACCAAGTTCATGCTGAGGCAAGAAATAAAGATGTTAGATGC	GAAGGTCGGAGTCAACGGATTAGAGGCAAGAAATAAAGATGTTAGATGA	CCAGGACTAAAGTTCCTCTCAATAAGATT
Al_BA_grs_22046_207	GAAGGTGACCAAGTTCATGCTGAGCTATGTGTTGAAGGGTGGC	GAAGGTCGGAGTCAACGGATTGAGCTATGTGTTGAAGGGTGGA	AATGTTGCAGATCTCGCAAATGTTGGTTT
Al_BA_grs_105670_336	GAAGGTGACCAAGTTCATGCTGAGCCAGGAGAATGAGTCGCC	GAAGGTCGGAGTCAACGGATTGAGCCAGGAGAATGAGTCGCT	CCAACAGACCAGCGGATGGTC
Al_BA_grs_31301_210	GAAGGTGACCAAGTTCATGCTGAAGGAGTAATCAGAAATATCTATGTCTC	GAAGGTCGGAGTCAACGGATTGAAGGAGTAATCAGAAATATCTATGTCTT	GGAAATCTCGAGGCATATCAACAATATGAA
Al_BA_grs_107213_257	GAAGGTGACCAAGTTCATGCTGAACCCGCTCGCCACCG	GAAGGTCGGAGTCAACGGATTGTGAACCCGCTCGCCACCA	GGCGGAGCGGCTTCGGCAA
Al_BA_grs 51382_260	GAAGGTGACCAAGTTCATGCTCCCTATTGAGGTTGGATACACG	GAAGGTCGGAGTCAACGGATTCTCCCTATTGAGGTTGGATACACT	GGTAGAACCGGATCCGAAGCGAA
Al_BA_grs_13816_313	GAAGGTGACCAAGTTCATGCTCCCACCTTGCATATAATGAACTTGC	GAAGGTCGGAGTCAACGGATTCCCACCTTGCATATAATGAACTTGT	GAGTCTAATCAAGGGATCAAAGGAAAGAA
Al_BA_grs_45736_154	GAAGGTGACCAAGTTCATGCTCCACGCAATATGTCCACCTC	GAAGGTCGGAGTCAACGGATTCCTCCACGCAATATGTCCACCTT	ATAATTATTACGAAAAATGAGGGGTCGACA
Al_BA_grs_70857_106	GAAGGTGACCAAGTTCATGCTCATGGTGCGGACATCCTCCC	GAAGGTCGGAGTCAACGGATTATCATGGTGCGGACATCCTCCT	GTTTCATTGGGCCAGAGACAACTGAA
Al_BA_grs_22268_229	GAAGGTGACCAAGTTCATGCTCAGTGAATGGTTAGAGGTTACGG	GAAGGTCGGAGTCAACGGATTCTCAGTGAATGGTTAGAGGTTACGA	CAGCTCGCCGCTCCTTCTGTTT
Al_BA_grs_18172_140	GAAGGTGACCAAGTTCATGCTCAGGTGTTTGGGGGCTTACTG	GAAGGTCGGAGTCAACGGATTGCAGGTGTTTGGGGGCTTACTA	ACCACCAAAAATAAAGACGTCCCATGTT
Al_BA_grs_110873_224	GAAGGTGACCAAGTTCATGCTCACTTTCGCTGCAGCACGC	GaAGGTCGGAGTCAACGGATTACTCACTTTCGCTGCAGCACGT	GCGGATCTCAAGCTGTAACCACAA
Al_BA_grs_47795_198	GAAGGTGACCAAGTTCATGCTCACCGAAGCAGTCCTCTACGG	GAAGGTCGGAGTCAACGGATTCACCGAAGCAGTCCTCTACGA	TTTGAAGCTGGCATCTTCGAGGCAT
Al_BA_grs_70422_294	GAAGGTGACCAAGTTCATGCTCACAACTGAATATTGAAGTTGTAGAAAAAC		GCAATGCATCTGTCACGGATTGATTAAAT

Al_BA_grs 43090_295	GAAGGTGACCAAGTTCATGCTCAAGTATTGTTAAATCAATtTTTTGAACCTCG	GAAGGTCGGAGTCAACGGATTCAAGTATTGITAAATCAATtTTTTGAACCTCA	gTCTACCTTGAttcgGctttittaactia
Al_BA_grs 45750 306	GAAGGTGACCAAGTTCATGCTCAAGAGGAAGTCAAAGGAGAGGG	GAAGGTCGGAGTCAACGGATTCAAGAGGAAGTCAAAGGAGAGGA	CTTATATGGCTAAGTCTGGTGCctgta
Al_BA_grs_36187_311	GAAGGTGACCAAGTTCATGCTATTGCAATCAAGATAGTGCCCTTG	gatggtcgangtcaacgiattctattccaatcaigatagtgccetta	GGGCTTTTCGAACATTTTAGGCATGTT
Al_BA_grs_42271_316	GAAGGTGACCAAGTTCATGCTATGGTGGGTGGAACGTCTATCG	GAAGGTCGGAGTCAACGGATTGATGGTGGGTGGAACGTCTATCA	GTGTAAGAGCCGGGTAGACTATCTT
1_BA_grs_1793_142			antagttttctaatatccttgtctta
Al_BA_zrs_66231_310	GAAGGTGACCAAGTTCATGCTATCCTCATAGCATGTCTCCTATCC	GAAGGTCGGAGTCAACGGATTGTATCCTCATAGCATGTCTCCTATCT	CCAGTAGGCCATGGGCAATGCTA
Al_BA_grs_18010_210	GAAGGTGACCAAGTTCATGCTATCACCGGGACTAAAAGTTCCTTTC	GAagGtcgaatcancgaattaatcaccgagactanaigttccttt	CAGTGTCCATGATTTCCCAGCAAGAT
Al_BA_grs_39607_166	GAAGGTGACCAAGTTCATGCTATATTGCTATTGTTGCAAATCATATGACG	gangGtcgaagtcancgaattcatattcctattgitccaantcatatgac	gGtcacatgattttaccgigtattcacat
Al_BA_grs_2979, 91	GAAGGTGACCAAGTTCATGCTATAAGAGGAAACTATTTCACTGAAGTTTG		CTCTTCTTTAGTTTGGCGAAGGGGAA
Al_BA_grs_106476_114	GAAGGTGACCAAGTTCATGCTAGTAAAACACAATACTCGCAACAAGTC	GaAGgTCGGAgTCAACGGATTGAAGTAAAACACAATACTCGCAACAAGTA	GTGACCGTTACACCATGCAAAAAACTAA
1_BA_grs_50105_166	GGTGACCAAGTTCATGCTAGGACCCACCTATGTCTGTAGG	GaAGGTCGGAGTCAACGGATTCAGGACCCACCTATGTCTGTAGA	CatGttgagtccacatagangtgcatatt
Al_BA_-rs_40519-355	GAAGGTGACCAAGTTCATGCTAGCGGCTCGGCCAGAGAC	GaAGGTCGGAGTCAACGGATTGAGCGGCTCGGCCAGAGAT	CCTCCtTTGGCGATGGCagcaa
Al_BA_grs 56328 -393	GAAGGTGACCAAGTTCATGCTACTGTGAGTATTGATTTTGTTACTGC		Cagttatccatattgganacaahgtancaa
BA_zrs_13164_197	GAAGGTGACCAAGTTCATGCTAATCACCAGGACTAAAGTTCCTCTC	a aggtcgaagtcaacgaattaanatcaccaggactaangtt	gatacaatatclatgittccciaccaa
Al_BA_rs 24802 _137	GaAGGTGACCAAGTTCATGCTAATAATTTGAACAACTTCATTTACTTCCCG	GAAGGTCGGAGTCAACGGATTAAAATAATTTGAACAACTTCATTTACTTCCCA	ATGTGTAACTCCAATTCGAAAATTTGAAAA
Al_BA_grs_11627_418	GAAGGTGACCAAGTTCATGCTAAGGTGAATCTATTGTGCACCACC		CTTAAGGGTGAATCGGTGGATCCTT
BA grs 2302	;GTGACCAAGTTCATGCTAAGATCCCTCAATTCTTC	GAAGGTCGGAGTCAACGGATTGAAGATCCCTCAATTCTTCATGATGTAT	actigatcantaggtcitt cGacagcat
Al_BA_grs_25255_270			CTTCATCATGACCTTGAGGTAGGCTT
Al_BA_rs_14263 283	GAAGGTGACCAAGTTCATGCTAACTATATATTACAAGTAAATTATAGGTTGCTC	GAagGtcgaagtcaacgaattaactatatattacaagtanattataggttgcta	GTTGTCAAAACTCTCGGTTGTTTCTCAAT
Al_BA_grs 84979 _305	GGTGACCAAGTTCATGCTAAATCAACGCCGCTGCAGCTG	GAAGGTCGGAGTCAACGGATTCAAATCAACGCCGCTGCAGCTA	GCAACCGCAGTCCACATAGTATTCAT
Al_BA_grs_2809\%_287	gatgatgaccaagttcatgcttttatctancacgiangatantgagtca	GaAGgTCGGAGTCAACGGATTATCTAACACGGAAGATAATGAGTCG	gCGCCACGGGGTGGTGTGA
Al_BA_grs_49516.365	GAAGGTGACCAAGTTCATGCTTTGGACCCAATATGTTTGGGGAA	GAAGGTCGGAGTCAACGGATtTGGACCCAATATGITTGGGGAC	CCACTTCTTCAATATTGAGAGACAAGCAT
Al_BA_grs 55748.286	TGACCAAGTTCATGCTTGTTGTGGTTGCTGGTTGATCAGA	AGGTCGGAGTCAACGGATTGTTGTGGTI	gangancangattaggiclagcancatant
Al_BA_grs $50960 _123$	GAAGGTGACCAAGTTCATGCTTGTTACTCCCTCCAATCCATATTACT	GAagGTCGGAGTCAACGGATTGTTACTCCCTCCAATCCATATTACC	GGAACTACTTCCCTCCGATCCATAT
Al_BA_rsf_ 63693 _289	GAAGGTGACCAAGTTCATGCTTGTGCTTATCAAAGTGATGCTTCCTA	GAAGGTCGGAGTCAACGGATTGTGCTTATCAAAGTGATGCTTCCTC	GCCACCATCTTGGAAAGCAAGA
Al_BA_zrs_70822_144	GAAGGTGACCAAGTTCATGCTTGGCCGGGAATCTGTTTGTCTTA	GAAGGTCGGAGTCAACGGATTGGCCGGGAATCTGTTTGTCTTG	GCTGTGGTCTCGTCTCGCTCTA
Al_BA_grs_75304_237	GAAGGTGACCAAGTTCATGCTTGATGCTTTGTGTCTTGCCACAAAAT	GAAGGTCGGAGTCAACGGAtTGATGCTtTGTGTCTTGCCACAAAAA	TCAAAATGGCACTATGGTTGCACACAAA
Al_BA_grs_23792 245	GAAGGTGACCAAGTTCATGCTTCCTGGGCAAACATGGACACTA	GAAGGTCGGAGTCAACGGATTCCTGGGCAAACATGGACACTG	tTGCAGATTATGCAGAGGCAGGAAATA
Al_BA_grs_73682-333	gaAGGTGACCAAGTTCATGCTTCATTCAAAGTAGGTAAGATGCtaAgaat	gaiggtcgangtcancgiattcattcanagtaggtangatgctangang	CtTCCATGAACTTGGTACAATCTtTCATTA
Al_BA_grs 66690 _31	GAAGGTGACCAAGTTCATGCTTCATGACACTAATCGGTGATGCGT	aggtcgaagtcaacggattcatgacactaitcggtgatgcgi	ACCTGGTCGTCCTGAAGCCGTT
Al_BA_grs_21436_323	GAAGGTGACCAAGTTCATGCTTATTTATTCCAGGCATTTGGGAGCAA	GAAGGTCGGAGTCAACGGATTTATTCCAGGCATTTGGGAGCAG	AATCGCTAAAATTGAAGTAGACCTTACCTT
Al_BA_grs 3947\% 320	GAAGGTGACCAAGTTCATGCTTACTCTGTTAAGAGTTTAAACTTATGATGTTA	gaaggtcgaagtcaacgiattctctgttangagtteaacttatgatgttg	GGAAGATCACAGTATGATTCGGTAACATT
Al_BA_grs 38928_159	GAAGGTGACCAAGTTCATGCTGTGTTGCATTTGTTGATCTCTATGTGTA	baAGGTCGGAGTCAACGGATTGTTGCATtTGTTGATCTCTATGTGTG	TACAATCCTCACAATCTACACGAAAGCAA
Al_BA_grs_2094_153	GAAGGTGACCAAGTTCATGCTGTCCAGATATGGTGGAAGCCCAT	GAAGGTCGGAGTCAACGGATTCCAGATATGGTGGAAGCCCAC	CGTGGGCCACTCGAAGTCTTCAT
Al_BA_rss_20446_192	GAAGGTGACCAAGTTCATGCTGTATGCATAATGATAGTGTTTTGTTGTATGTT		CaCTCACTTGCTACTCCACAAACCTA
Al_BA_grs 54317-241	GAAGGTGACCAAGTTCATGCTGGTTAAATCAGGCACGCACATCAAT	GAAGGTCGGAGTCAACGGAtTGTtaAATCAGGCACGCACATCAAC	TGAATGAGTATATTTTCGACTGCTCTGTTT

Al_BA_grs_7468_252	GaAGGTGACCAAGTTCATGCTGGTGTCATGAAGCACTTGGTGCA	GAagGtcgaagtcaacgiattgigtcatgaagcacttcgigch	acgcttcatgcagacaatgganaicata
A1_BA_grs 35480_424	AGGTGACCAAGTTCATGCTGGGTTTAACATAACTGTTGTAGCTTCTA	GGTCGGAGTCAACGGATtGGTtTAACATAACTGTTGTAGCTTCTG	Cagctacaatttantccacaicticta
Al_BA_grs_3059_-114	GAAGGTGACCAAGTTCATGCTGGCTTTCTATGTCTTGTGTTCCTCT	GAAGGTCGGAGTCAACGGATTGCTTTCTATGTCTTGTGTTCCTCC	CTATGAAATTAAATTCAACCAACACACAAT
Al_BA_grs_10525_144	GAAGGTGACCAAGTTCATGCTGGATCCGGAGTGGATTGCGCT	GAAGGTCGGAGTCAACGGATTGATCCGGAGTGGATTGCGCG	CTCGGTCCCTCATTCCAGGCAT
Al_BA_grs_81326_338	GAAGGTGACCAAGTTCATGCTGGAGCGGTGATCTGTGGTCGT	GaAGgTCGGAGTCAACGGATTGAGCGGTGATCTGTGGTCGC	agtcactctatccatgtcccagat
Al_BA_grs_105739_119	GAAGGTGACCAAGTTCATGCTGCAAGTGGCCACACTTGAGAGA	GAAGGTCGGAGTCAACGGATTCAAGTGGCCACACTTGAGAGC	TTGGTGTTCCGCGTGAACTTCACTT
Al_BA_grs_57018_162		GAAGGTCGGAGTCAACGGATTATGGCTTGAAGAATCAGAGTGTCAG	gTaAGATGCTTGAACTAAGTtTGTCGGTT
Al_BA_grs_44314_197	gangGtgaccaagttcatgctgatanaacacatagttctcacacgagtt	Gatggtcgantcancgaattatanaicacatagttctcacacgagtc	tTGTGCCTGCGAGATACTATtTGCTATtT
Al_BA_grs $89103-286$		GAAGGTCGGAGTCAACGGATTGAGCATGTATTATCATGAGAGCTTCC	gTGGTCCTTATGTtTGTTGCAACAACTAT
Al_BA_grs_10303_214	GAAGGTGACCAAGTTCATGCTGAGCAAATGGAAATTAGTGTAAAACCCA	GaAggtcgaagtcancgaattagcaatggaattagtgtanacccg	CAGGAACGTTGTCCGTTGCGCTT
Al_BA_grs_106652_25	GAAGGTGACCAAGTTCATGCTGAGAATCGTTCAGGAACATTGTCCA	GaAggTcGGagtcaicgiattagaitcgitcagGaicattgtcci	GGATTCAAACCCTGCATCAGAGTGTT
Al_BA_grs_4417_203	gatggtaccaagttcatgctaatataagttcttatcgatatctttacca	GAagGtcgaagtcancgaattgantataagttcttatcgatatgitteacct	CTTCCAAGGTGAAACTTGCCCCTTT
Al_BA_grs_108904_232	GAAGGTGACCAAGTTCATGCTGAAGATGTCTGGTACCATGCCTT	GaAGGtCgGagtcaacgeattgangatgictggtaccatgccta	CTTTTTCTATTCCATCACATACGTGTTCTT
Al_BA_grs S2581_191	GAAGGTGACCAAGTTCATGCTGAAAGTACAAAACAGGTAAAGAAACCCT		tganaggtattattanccagcatctcaatt
Al_BA_grs_8059_119	GAAGGTGACCAAGTTCATGCTCTATGCAAGACAGGTCTGTCGT	GAAGGTCGGagtcaacgaattctatgcangacaggtctatcic	GTGGTTCCTCCATCTACCCGACAA
Al_BA_grs_106905397	GaAGGTGACCAAGTTCATGCTCGATtTCCACTGTCAGAAATTGCCT	GAAGGTCGGAGTCAACGGATtTTCCACTGTCAGAAATTGCCC	tgaatantattiattcgangctcctccaaa
Al_BA_grs_1742_329	GAAGGTGACCAAGTTCATGCTCCGCTCATAGCAGTTCTGGCTA	gaaggtcgaagtaacgiattcgctcatagcagttctggcta	Aattttccttctacttaagaatttgagata
Al_BA_grs_7987-167	GAAGGTGACCAAGTTCATGCTCCCGTTGAATCATGTCGACCATA	GaAGGTCGGAGTCAACGGATTCCCGTTGAATCATGTCGACCATG	GCTGTGTACCCATTGCGTGATATGAT
Al_BA_grs_3621_-169	GAAGGTGACCAAGTTCATGCTCCCCAAGAAATAAAAGTGTGAATCAAGA		tTCCTTGAATATGCGCACTATCCACATA
Al_BA_grs_40585163	GAAGGTGACCAAGTTCATGCTCCCAGCATAACAAAATACGGAAACAA	gatggtcgaagtcaacgiattcccagcatancanaatacgaancag	GTAGCTTGTAACCTATATGCACATTCACAA
Al_BA_grs 24451_323	GAAGGTGACCAAGTTCATGCTCCATCATGGACTAATGTGTAATGGTA	GAAGGTCGGAGTCAACGGATtCCATCATGGACTAATGTGTAATGGTC	CCATGCACTTTTGTGCGGGTGGAA
Al_BA_grs 75715_300	GaAGGTGACCAAGTTCATGCTCCACAAAAATGTTGAACAATTTCTCTTTCT	GAAGGTCGGAGTCAACGGATTCACAAAAATGTTGAACAATTTCTCTTTCC	aAtacatcctcataitgicattatgctt
Al_BA_grs 69833-156	GaAGGTGACCAAGTTCATGCTCATGTTGACGTCATCGTGGTCATT	gaagitcgaagtcancgiattatgttaacgicatcgtgatcatc	GACGCGACCGCCGAGGCAA
Al_BA_grs_104369.94	GAAGGTGACCAAGTTCATGCTCATCTACCGACATAAGCAACGGT	gaAggtcggagtcaacgiattcatctaccgacataagcancgic	actatgicanaggitacagacagacat
Al_BA_grs_2268_300	GaAGGTGACCAAGTTCATGCTCATCAGAGTGTTGAGAAGTGCAACA	GAAGGTCGGAGTCAACGGAtTATCAGAGTGTTGAGAAGTGCAACG	atcattaattctticctitgicangacant
Al_BA_grs_14647345	GAAGGTGACCAAGTTCATGCTCATAGGCAAGACACCAATACACCTT	gaaggtcgaagtcancgaattataggcangacaccantacacttc	ataa aiaat
Al_BA_grs 38953_122	GAAGGTGACCAAGTTCATGCTCATACAAGGAAGGGTGGAtTTTGGAT		agctactactacticactaccatacta
Al_BA_grs 32165_167	GAAGGTGACCAAGTTCATGCTCAGTGAGAAGATCGGGCGT	GAAGGTCGGAGTCAACGGATTCTCAGTGAGAAGATCGGGCGA	gTgGattgtggatgctcaccaagTa
Al_BA_grs_6867_101	GAAGGTGACCAAGTTCATGCTCAGGCTCATCATCTTGCTCAGAT	GaAGgtcgaagtcancgaattcaggctcatcatcttgcteagac	agasgatgattccgaggangangatgatt
Al_BA_grs 39720_296	GAAGGTGACCAAGTTCATGCTCACTTATGTTAATAAGCAAGCTTTGTTCT		AAATCCAACAGATGAAGGTCACGAGAAA
Al_BA_grs_2569_149	GaAGGTGACCAAGTTCATGCTCACACACATAATTGAACAAGATATGAACA		Cagttgitchacttitatgatcatticta
Al_BA_grs_1736_249	GAAGGTGACCAAGTTCATGCTCAATGCTGCAAATCTTGCAAATGTTTGT		GGCTAAGTTGGCTTGATGTTTGGCT
Al_BA_grs 62588_348	GAAGGTGACCAAGTTCATGCTCAAGCTATTCATGTGGCTGGCAT	GaAGgTCGGAGTCAACGGATtCAAGCtattcatctggctgacag	GTCTAAAGGGTATGTCCGCAGTTCAA
Al_BA_grs_43399330	GaAGGTGACCAAGTTCATGCTCAAGAGAAGAAATGACTTCTGAAGTACA		GCTTCGAGGTTTCCTTTTGCCTCAT
Al_BA_grs_105572_134	GAaGGTGACCAAGTTCATGCTCAAGAACCTGCGGCCGAAGTTT		GCCCCGTCGCCACGTCACAT
Al_BA_grs_2578_310	GaAGGTGACCAAGTTCATGCTATtTTTCCTTCGTTCTATATAAACACACTTATT	GAAGGTCGGAGTCAACGGAttTCCTTCGTTCTATATAAACACACTTATG	gacgagactgicatgccgatatana

					S 0		E E E 4 4 0 0 0									1		気 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0								$\begin{aligned} & 4 \\ & 0 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{array}{l\|} \substack{4 \\ 4 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 4 \\ 0 \\ 4 \\ 0 \\ 0} \\ 0 \\ 0 \\ 4 \\ 0 \end{array}$				
	GAAGGTCGGAGTCAACGGATTCAAATTCTTGAAGTAAAAGGATCCAACAT																									U 0 E 0 0 0									
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0							0 \mathbf{S} \mathbf{S} 0 0 0 0								E			gaAGGTGACCAAGTTCATGCTAATGACCGTAGCAGCAAATACCG			GaAGGTGACCAAGTTCATGCTAAGGAAACAAAATGAGATATACAGCGC			U 0 4 0 0 4 5											
																																			(icl
* * * * * * * * *																																			

Al_BA_grs 58830_200	GAAGGTGACCAAGTTCATGCTCCATGGCACAGATCTGGGACA	GAAGGTCGGAGTCAACGGATTCCATGGCACAGATCTGGGACG	GACTCAGGATGGGGAGGAGGA
Al_BA_grs_73447_285	GAAGGTGACCAAGTTCATGCTCCATCTCCGCCTTCCCCTCA	GAAGGTCGGAGTCAACGGATTCATCTCCGCCTTCCCCTCG	GTCTGGACCTTACCTGACATCGATT
Al_BA_grs_56980_100	GAAGGTGACCAAGTTCATGCTCATTATGAGAAGAAAATGAGTGCTGTCAT	GAAGGTCGGAGTCAACGGATTATGAGAAGAAAATGAGTGCTGTCAG	GTGCTCATCATAATTCATAAGTGTGCCAA
Al_BA_grs_46633_285	GAAGGTGACCAAGTTCATGCTCATTACAAGGATTTAGTAGGTAAATAACATATT	GAAGGTCGGAGTCAACGGATTACAAGGATTTAGTAGGTAAATAACATATG	tttgtacattgicattgatgatagcatata
Al_BA_grs_21036_210	GAAGGTGACCAAGTTCATGCTCATGTCGTTAGAAACCAATACCTCT	GAAGGTCGGAGTCAACGGATTCATGTCGTTAGAAACCAATACCTCG	AGTTTCGTGAGGATCCTACAGCCAT
Al_BA_grs_103043_193	GAAGGTGACCAAGTTCATGCTCATGCAAAAATAGATGAAATAACATAAGTATCA	GAAGGTCGGAGTCAACGGAtTATGCAAAAATAGATGAAATAACATAAGTATCG	GGGAGGGGGTGATACGTCCATT
Al_BA_grs_11338_127	GAAGGTGACCAAGTTCATGCTCACCACTAACAAGGATTCTTTCTGCA	GAAGGTCGGAGTCAACGGATTACCACTAACAAGGATTCTTTCTGCG	GCGATCATGGACATCAACCCTTGTT
Al_BA_grs_35877_183	GAAGGTGACCAAGTTCATGCTATTTTTCTAATCTTCTTTTGTATCTTCTTCCA	GAAGGTCGGAGTCAACGGATTTTCTAATCTTCTTTTGTATCTTCTTCCG	GAATAGGGAGGGAAGGTGGGGTA
Al_BA_grs_107962_149	GAAGGTGACCAAGTTCATGCTATTCGTTGTATACCGGTT	GAAGGTCGGAGTCAACGGATTCGTTGTATACCGGTG	CTACGGAAACAAACACCCCAAACAATATA
Al_BA_grs_45108_445	GAAGGTGACCAAGTTCATGCTATTATCCCTCTTTCTACCTATTTTATATTTCT	GAAGGTCGGAGTCAACGGATTATCCCTCTTTCTACCTATTTTATATTTCC	GAGGTTCCAGGGAAGTATAAAGGAGTA
Al_BA_grs_26197_264	GAAGGTGACCAAGTTCATGCTATTACTTCAGTAATGACCTCTCCTTATTA	GAAGGTCGGAGTCAACGGATTACTTCAGTAATGACCTCTCCTTATTC	TCTCATTAGAGGTCATTCTTGGCACAAA
Al_BA_grs_19842_193	GAAGGTGACCAAGTTCATGCTATCGCCACCTGGTATAGGCGA	GAAGGTCGGAGTCAACGGATTCGCCACCTGGTATAGGCGG	ttTGAGGAAGTACACACGACCAAGTAATT
Al_BA_grs_53256_289	GAAGGTGACCAAGTTCATGCTATCCGCTGTTGCGGTTGTCGTT	GAAGGTCGGAGTCAACGGATTCCGCTGTTGCGGTTGTCGTC	AGGACCGCGAAGAGGTCGACAT
Al_BA_grs 37642_255	GAAGGTGACCAAGTTCATGCTATCAATTCGACGAAAGTAGATCCTCAA	GAAGGTCGGAGTCAACGGATTCAATTCGACGAAAGTAGATCCTCAC	agGatccgatcganagttctgattcttat
Al_BA_grs_52644_193	GAAGGTGACCAAGTTCATGCTATAGATTTCAATATAACTTGTCCATTAAAGGT	GAAGGTCGGAGTCAACGGATTATAGATTTCAATATAACTTGTCCATTAAAGGA	CCACCGGTGCCTCTGCATTAGTT
Al_BA_grs_80127_217	GAAGGTGACCAAGTTCATGCTATACGAGGAGGCTCCACAAGGT	GAAGGTCGGAGTCAACGGATTATACGAGGAGGCTCCACAAGGA	AATATCGAGGGAGTGAGGATGCCAT
Al_BA_grs_86814_283	GAAGGTGACCAAGTTCATGCTAGTCTGGGACAATAAACATTGAACACA	GAAGGTCGGAGTCAACGGATTGTCTGGGACAATAAACATTGAACACG	CCAACTATCAGGTTGATGATGAAATCCTT
Al_BA_grs_59767_194	GAAGGTGACCAAGTTCATGCTAGGGAGAAGTTGTTCGAAGAGCA	GAAGGTCGGAGTCAACGGATTGGGAGAAGTTGTTCGAAGAGCG	GagCatcheanamatccagccanaigat
Al_BA_grs_47079_104	GAAGGTGACCAAGTTCATGCTAGCAGCGAGGAAGAGCACCAA	GAAGGTCGGAGTCAACGGATTGCAGCGAGGAAGAGCACCAG	CTCGATGAGAGATAGAGGAGGACAA
Al_BA_grs_11530_300	GAAGGTGACCAAGTTCATGCTAGATTTATCTAAATTTTGACAAATCTAAGACAT	GAAGGTCGGAGTCAACGGATTAGATTTATCTAAATTTTGACAAATCTAAGACAA	CGACCGCTACTCGCTCTGTtTTAAA
Al_BA_grs_53772_252	GAAGGTGACCAAGTTCATGCTAGATCTCGAGCAAGATCGCTCTAT	GAAGGTCGGAGTCAACGGATTGATCTCGAGCAAGATCGCTCTAC	tactGgctittanctattgcacgatcgat
Al_BA_grs_44524_221	GAAGGTGACCAAGTTCATGCTAGAGTGGCAGATACATTGGTGTCAA	GAAGGTCGGAGTCAACGGATTAGTGGCAGATACATTGGTGTCAG	ACATTGCTCGGGTTCGCTAACTCAT
Al_BA_grs_33480_316	GAAGGTGACCAAGTTCATGCTAGAGCTGCCTATAATGATCCAGCTA	GAAGGTCGGAGTCAACGGATTAGCTGCCTATAATGATCCAGCTG	TAGGGGACTACATCAATTCAACTGCATTA
Al_BA_grs_41650_119	GAAGGTGACCAAGTTCATGCTAGACATTTACATGGTTGAAAGAAGTTTGA	GAAGGTCGGAGTCAACGGATTGACATTTACATGGTTGAAAGAAGTTTGC	GGAATAAGCAGTGCCTAAAGTAGCAAA
Al_BA_grs_41971_299	GAAGGTGACCAAGTTCATGCTAGACATATTATCGCGTCGGGCAT	GAAGGTCGGAGTCAACGGATTGACATATTATCGCGTCGGGCAC	CAGCAACTCTAACAGCCAAACAAGGTA
Al_BA_grs_83083_209	GAAGGTGACCAAGTTCATGCTACTTTCCTAATTGGACCACCCCA	GAAGGTCGGAGTCAACGGATTCTTTCCTAATTGGACCACCCCG	TGGACTGTGTCTTGGAGCCCATTA
Al_BA_grs_105440_108	GAAGGTGACCAAGTTCATGCTACTTGGACAAGCGGAGGAGT	GAAGGTCGGAGTCAACGGATTACTTGGACAAGCGGAGGAGC	TTTGCTGCTGAGATTTGGAGCATTTGAT
Al_BA_grs_51204_398	GAAGGTGACCAAGTTCATGCTACTGGTTGCAGACCACGGAGA	GAAGGTCGGAGTCAACGGATTCTGGTTGCAGACCACGGAGG	CCAAATAATGGGTGGCAAACAGTACTTT
Al_BA_grs_89134_157	GAAGGTGACCAAGTTCATGCTACTGGTTCTGTCACAAAGATACAAATTAT	GAAGGTCGGAGTCAACGGATTACTGGTTCTGTCACAAAGATACAAATTAA	CATTACATTGTGCCACCCCATAGTTTAAA
Al_BA_grs_72129_148	GAAGGTGACCAAGTTCATGCTACTGGTTCCAACGGAACATTCTGTT	GAAGGTCGGAGTCAACGGATTGGTTCCAACGGAACATTCTGTG	CGGTACGCCGTATACTGACCCTT
Al_BA_grs_87629_432	GAAGGTGACCAAGTTCATGCTACTGGAAGCCAATGAGAAGGTACTA	GAAGGTCGGAGTCAACGGATTGGAAGCCAATGAGAAGGTACTG	CAAGCTCTTGCATCTCCTACCAGAT
Al_BA_grs_31176_165	GAAGGTGACCAAGTTCATGCTACCCATCAGGGAGAATATCATTTTGT	GAAGGTCGGAGTCAACGGATTCCCATCAGGGAGAATATCATTTTGC	GTGATTAAAATCAACTCGGGTACCACATT
Al_BA_grs_31932_150	GAAGGTGACCAAGTTCATGCTACCAATCCACCAATGCGAATGTCAT	GAAGGTCGGAGTCAACGGATTCAATCCACCAATGCGAATGTCAC	TCATCCAACACTTACGTTACGAAAGCAA
Al_BA_grs_23681_127	GAAGGTGACCAAGTTCATGCTACATGGAGCACTAAAAGCATATTCGA	GaAGGTCGGAGTCAACGGATTCATGGAGCACTAAAAGCATATTCGG	CTTTTCGACTGCTGTCATTTTTTGGTTTTA
Al_BA_grs_47354_274	GAAGGTGACCAAGTTCATGCTACATGCATAGAAGTTTTTGATGCAATAGT	GAAGGTCGGAGTCAACGGATTCATGCATAGAAGTTTTTGATGCAATAGG	CCTCTTCAATTGACAAACAAGAATTAATAA
Al_BA_grs_60258_411	GAAGGTGACCAAGTTCATGCTACATGAAGGACTTTTGCATAAGCCATT	GAAGGTCGGAGTCAACGGATTCATGAAGGACTTTTGCATAAGCCATC	CATTCTCTAATGGATGCTTTGGTATTTGTT

Al_BA_grs_ 30365191	gaaggtgaccaagttcatccttcatggicttctcaatccga	GAAGGTCGGAGTCAACGGATTGCTTGATGGTCTTGTCAATCCGA	gGacctgcaatacgatccgia
Al_BA_grs 52811 _326	gaAGgTGACCAAGTTCATGCTTGAAGTGGCatGaccatgicatc	GAAGGTCGGAGTCAACGGATTGTTGAAGTGGCATGACCATGTCATT	gaatangtcaitcatctcactccaccata
Al_BA_grs 32880_174	GAAGGTGACCAAGTTCATGCTTCTCCGAGGTGTAATGGACGC	GAAGGTCGGAGTCAACGGATTTCTCCGAGGTGTAATGGACGT	GACAAATCTCTTCATCCTTCCGAGAAAT
rs-	GGTGACCAAGTTCATGCTTCCACACCTTTCGTATTAATAAG	gatgitcgaatcancgaattcttccacacctitcgtattaatangitatai	CaAAttangtgctcgancagtanaactt
Al_BA_grs 52683_312	GAAGGTGACCAAGTTCATGCTTCATCTTTGGTTCTCTTCCAGAC	GAAGGTCGGAGTCAACGGATTCTTCATCTTTGGTTCTCTTCCAGAT	GAAGGAAGAGGAAAGCATGCCAGAA
Al_BA_grs_ 53746 _224	GAAGGTGACCAAGTTCATGCTTCAAGTGAGAGATTGCCATGATTTG	GAAGGTCGGAGTCAACGGATTGTTCAAGTGAGAGATTGCCATGATTTT	attctantcctatagaagctccttacait
Al_BA_grs 35289_349	gaaggtgaccaagttcatGcttatttggaggtgagcteactcta	GAAGGTCGGAGTCAACGGATTGTTATTTGGAGGTGAGCTCACTCTT	gatgitcactacangictcgtagga
Al_BA_grs_23002_337	GAAGGTGACCAAGTTCATGCTGTGGCCTCCCAAACATAACACG	gaiggtcgaagtcancggattcgtcgcctcccaaicataicaca	Aattcatttatcatcaatctattattect
Al_BA_grs_1138_-159	GAAGGTGACCAAGTTCATGCTGTGCTGGATTCTGTTGTTGTGAATC	GAAGGTCGGAGTCAACGGATTGTGCTGGATTCTGTTGTTGTGAATA	GTGAAAATTTGCAACATGGTTCAAAGGAAT
Al_BA_grs_4766_114	gaaggtgaccaagttcatGctgigatantcatttgiccatgattittgic	GAAGGTCGGAGTCAACGGATTGTGATAATCATtTGTCCATGATTTTTGGA	GTGCAAACCAACCATTGGAAAGAGAAATT
Al_BA_grs 47188.142	GaAGGTGACCAAGTTCATGCTGTCCGTATATCATGTTCTCGTCG	GAAGGTCGGAGTCAACGGATTAGGTCCGTATATCATGTTCTCGTCA	CAGCTCATAGTCCTCCGAAACGAA
Al_BA_grs_ 22224318	GAAGGTGACCAAGTTCATGCTGTCACTCACACGGCCACGG	GAAGGTCGGAGTCAACGGATTGGTCACTCACACGGCCACGA	CTGCTGGCCAGTCGTGGCGAT
A1_BA_grs 24550 366	GAAGGTGACCAAGTTCATGCTGTATCAAGGTGACAGTGAGCTCG	GAAGGTCGGAGTCAACGGATTGTATCAAGGTGACAGTGAGCTCA	a ACAGACCAGCCGCCGtTGCTA
BA_grs_11448_330	gtacactaaccganatcaccc	GAAGGTCGGAGTCAACGGATtCGTACACTAACCGGACATCACCT	Gacagtccgatctuctgaaia
Al_BA_grs 78633_101	gatagtaaccaagttcatgctagtactatcgigaggtcgac	GAAGGTCGGAGTCAACGGATTGGTGCTGTCGTGAGGTCGAT	CAGCTTAATTCTAAGTTCTAATGCTGGCAT
Al BA grs 32742_102	GAAGGTGACCAAGTTCATGCTGGTGCctGacgatgactci	GAAGGTCGGAGTCAACGGATTCTGGTGCCTGACGATGACTCA	tCcGGGagctatacticcica
AI_BA_grs_16269_315	GAAGGTGACCAAGTTCATGCTGGTCGACTACATACTCGACGG	GAAGGTCGGAGTCAACGGATTATGGTCGACTACATACTCGACGA	CCTCTGGGGTCTCAAGGTCCAT
Al_BA_grs 82583 373		GAAGGTCGGAGTCAACGGATTGGGTCCACAATGAGCAAGTCCA	ССатСGтTGCTTCGTCATCтTCTGTT
Al_BA_grs_27250 399	GAAGGTGACCAAGtTCATGctggtatcagttanccacctiaggtg	GAAGGTCGGAGTCAACGGATTCGGTATCAGTTAACCACCTTAG	CCGGGGACTCAAATTCGAGTTAGAT
Al_BA_grs 59169.329	GAAGGTGACCAAGTTCATGCTGGGTTACCGGTATtCTTCGTCG	GAAGGTCGGAGTCAACGGATTGGGGTTACCGGTATTCTTCGTCA	CGTTCCCGTCCACCTCCGCAA
Al_BA_grs_14011_86	gaAGgTGaccaagttcatgctaggacgitchcctanctang	GAAGGTCGGAGTCAACGGATTAGGGGGGGTTCGCCTAACTAAA	Catacaigttagacatgcattccgactt
Al_BA_grs 32174 _235	GaAGGTGACCAAGTTCATGCTGGGGCCTtTGGAAGCATtTCTTC	GAAGGTCGGAGTCAACGGATTGGGGCCTTTGGAAGCATTTCTTT	ATTGGATAGAGAAAATGGCACCACCAA
Al_ BA_grs 78039 - 332		GAAGGTCGGAGTCAACGGATTATGGGGATATGAGTATCACGAGCA	gttGcaacaacatangaactacttgctt
Al_BA_grs 12696405	GAAGGTGACCAAgTTCATGCTGGCCTCCTCGCTAACC	GAAGGTCGGAGTCAACGGATTGCTGGCCTCCTCGCTAACT	ttgtagctacgitgicgactgatt
A1_ BA _grs 27804_162	GaAGGTGACCAAGTTCATGctGgcanatatcgacacticattci	GAAGGTCGGAGTCAACGGATTGGGCAAATATGGACACTGCA	taAGCCAAGACTAATCCGTTGGAtTCTTT
BA_-ris 48665 _240	gigaccaagttcatgctggatgitacaagtgatccttag	GAAGGTCGGAGTCAACGGAtTGGGATGTTACAAGTGGTCCTTAGA	CTAACCCCGTGCTGGTCTCCAA
	gatggtaaccaagttcatgctagacaagtacgccaccaccg	GAAGGTCGGAGTCAACGGATTGGACAAGTACGCCACCACC	gGcattgatcgtccaccacgat
A1 BA grs 55573159	gaAGgTGaccaagttcatgctganagagtcacagaigcgicag	TCAACGGATTGGAAGAGTCACAGA	tCCCtttcgicagtgaagcac
Al_BA_grs $59466 _289$	GGTGACCAAGTTCATGCTGCCTGACAATGACTTTTATGATGCG	GAAGGTCGGAGTCAACGGATTGGCCTGACAATGACTTTTATGATGC	gGtaAtaattgittcattgatcgatccgra
Al_BA_grs 58339,94	gaAGgTGaccaagttcatcctocctctatchaacaccgtac	GAAGGTCGGAGTCAACGGATTGGCCTCTGTCCGACACCGTAT	ataatahtgtteagatataggiaggtccat
Al_BA_grs 97232 _198	GAAGGTGACCAAGTTCATGCTGCCGAGCAGGTTCGTCCAC	GAAGGTCGGAGTCAACGGATTGGCCGAGCAGGTTCGTCCAT	aAATCTGTGGGGCGTCACAGCAAT
Al_BA_grs 33469.357	GAAGGTGACCAAGTTCATGCTGCCCGAACCAAAGAAGTAGTCG	GAAGGTCGGAGTCAACGGATTGCCCGAACCAAAGAAGTAGTCA	GaСТСтTССТССастССстССа
Al_BA_grs_46578_124	GAAGGTGACCAAGTTCATGCTGCCAGGCCATCAGATGATATCC	GAAGGTCGGAGTCAACGGATTGCCAGGCCATCAGATGATATCT	GCaCCTCCGCGGTGACAAACAT
Al_BA_grs 48157-183	GAAGGTGACCAAGTTCATGCTGCAGCTGCTTGCCAGCGAC	GAAGGTCGGAGTCAACGGATTGGCAGCTGCTTGCCAGCGAT	Caggcccacatancctttcgatctt
Al_BA_grs_71494_201	gaaggtgaccaagttcatgctgcacacaatacatcagaahgagaattg	GaAGGTCGGAGTCAACGGATtGCaCaCaAtacatcagaangagaatta	gTCTCGTTGCtattcgitattaatGctit
Al_BA_grs_12452-228	GAAGGTGACCAAGTTCATGCTGCACAAGGACCAGGAGGAGAC	GAAGGTCGGAGTCAACGGATTGCACAAGGACCAGGAGGAGAA	CGTGGGTTGAAGTAGTCGAACTTGTA

LVLODLOVLDOPLLLLLLVDOLJLLJVV		DJVODSLVDVDVDDVDLLLVLVOLODLVOLLDVVOJVDLDOVVD	$0 \varepsilon 1^{-} 29 L 6 \varepsilon^{-8 . s i s}{ }^{-1} \mathrm{Vg}^{-}$IV
LVDOVDVDODVVDLLDOJVLDıכد			
VFOOVDOLLVVVYOLDODIVOLLVLLLLLI		OLLVODLLVODLLVVLOLVODVLVOLVOLODLVOLLDVVOJVOLDOVVD	
LLVODLVLLODDLODLDVYODVVLLLDLL			
	VLLDLVOVODOVODDLVODLVOLLVDDOVYOLDVDDSLDOVY		
LLLDOVOVDVLDLVLDLVDDOLLVDVLJL		OOSLOVLDOLLVOLVLOLDLDLVOLODLVOLLDVVOJVDLOOVVD	
LLDLDOVDDODOLLVEDVVILSLLS			
LLDLLOLVOJOOSLVVLVODLLLVILOV			
LLDVYOLVOLVDVVOVVDLLVYDOLVDLL			
VVDOLDVODOVOLDVOLDOLVLVVVFL		DOLVYDOLDVOL.DLDVDOOLODLVOLLDVYOJVOLDOVVD	
VFODVLDOVLDOVVYVJVYOLVFVYODVLD			
LLVVLDVYODLSLYOOLLOLLOLVLVVDLS		OLDLLDVDLVDLLVDOLVVOLOJOLODLVOLLDVVOJVOLDOVV	$99 \varepsilon^{-16+1 I^{-s . s i d} 8^{-} \mathrm{Vg}^{-} \mathrm{IV}}$
LVLVJLLVLLDDJVDVDLDOLIDVJVJL		OVVOVVDOL.DVVVVLVOLLVOLVVVVVLVVDJLODLVOLLDVVJJVDLDSVVD	
LVOLVVLLOOVDOVOOLDVLOVOVDLLVV		OLDVLLVVODVDOLLVDOVLDLVVDOLODLVLLDVVOJVOLDOVVD	281-612t9 -ssis ${ }^{-1} \mathrm{Vg}^{-} \mathrm{IV}$
VLDDOLOLLLVDDDOLDOLVLDVVLS			
LVOTVILOULLLDODSDOLVID		TVDODLDSVODVLDDOLVDOLODLVOLLDVVOJVDLDSVVD	$86 \tau^{-5 z z o s-s s i s}{ }^{-1} \mathrm{Vg}^{-} \mathrm{IV}$
	YODOLDYDOL.LY		
LLDOLDOLIOOLDLVDVVLDVDPVVI			
LLLDLLVVLLLVOLLLOLLOLDODVVJDว			
LLDLLLOOVODOOLDOLOVLOLLV		ODLLVOVDOYVDVVLLOODLDVYDLODLVOLLDVYOJVDLODVV	$16 \varepsilon^{-}$- $200 \varepsilon^{-5 \mathrm{ssid}^{-}-\mathrm{vg}^{-} \text {IV }}$
LLDOLOVVLVLOLLLOOVVLVOLVJLLJVD			
LLLVOLLLLDVLVOVLLDLJVYVLDODSLD		OLLDVLVLDOLVDOLLODOLLLLVYDLOOLVOLLDYVOJVDLDOVVD	
LVDODOVDDLDOLDLDSLLVLVOLV			
VLIVVVDVLVLLOVOVVLVOVOJOVTDLD			
VLVLDOVODLLOOOVOOLLDLLVOD	LDLVVVLDLVLLכפV\%OวLDOD.		
LLOLLLVYOVLDLYOLDJOLVYOLYOJVD			
VLILODLVVVDLDVOLVOLLDOVDVSOVL			
LLLDVEVOVVVDVVVOVVLVDVOLVLDLDS		OVFOVVOVOVLVLDVVLVLVVLVVODVDLLVDLODLVOLLOVVOJVDLODVVD	
VVVDDOSDOODLLLLVOLVLVVOLDVLLLL			
OLVLOJVVLDLVLVVVVVJLVVLDILVL	VDDLLOPV		
	VOVDVว	OJVDVILVLDOOLVOJLDVYODLOOLVOLLDVVJJVDLDOVV	E9\% ${ }^{-} 0 \varepsilon 89^{-\mathrm{ssid}^{-1} \mathrm{Vg}^{-} \mathrm{IV}}$

Al_BA_grs_25906_286	GAAGGTGACCAAGTTCATGCTCACTTCATGTGCGCCGTTATCC	GAAGGTCGGAGTCAACGGATTCCACTTCATGTGCGCCGTTATCA	GCGGAGGTGTCGCCTGCGT
Al_BA_grs_65050_207	GAAGGTGACCAAGTTCATGCTCACTCGCCCATGAACTTTTGGG	GAAGGTCGGAGTCAACGGATTGCACTCGCCCATGAACTTTTGGA	GCCGTAGAGAAACAGTGTGTCGAAA
Al_BA_grs_48971_177	GAAGGTGACCAAGTTCATGCTCACTACTTCTTTGTACTGTATTTGTTCG	GAAGGTCGGAGTCAACGGATTGCACTACTTCTTTGTACTGTATTTGTTCA	CGTCACATCTGGCTAATATGTCATAAGAT
Al_BA_grs_48040_202	GAAGGTGACCAAGTTCATGCTCAATCCTGCATAAAAGGATTGGATAG	GAAGGTCGGAGTCAACGGATTAATTCAATCCTGCATAAAAGGATTGGATAA	GGGAAAGAATGAAATCTTTAGTGAGGAATT
Al_BA_grs_11460_254	GAAGGTGACCAAGTTCATGCTCAAGTTTTCTGGAGAGATGACTTCG	GAAGGTCGGAGTCAACGGATTGCAAGTTTTCTGGAGAGATGACTTCA	GCAAATTGTTCAAGTGTTAAAGGATTTGAT
Al_BA_grs_44566_218	GAAGGTGACCAAGTTCATGCTCAAGTAAGGTCGGTACATTAGCAC	GAAGGTCGGAGTCAACGGATTCCAAGTAAGGTCGGTACATTAGCAT	TGATTAATCTTCTTTGGTTGGATAAGTGTT
Al_BA_grs_55135_245	GAAGGTGACCAAGTTCATGCTCAAATTGACCGTATGGCCCTCAG	GAAGGTCGGAGTCAACGGATTCAAATTGACCGTATGGCCCTCAA	GGTAGACGGTTTTCTAATATTGCCAGAAT
Al_BA_grs_55523_149	GAAGGTGACCAAGTTCATGCTCAAAGCATCAATATCCAATGGCAACG	GAAGGTCGGAGTCAACGGATTACAAAGCATCAATATCCAATGGCAACA	CCTGTGGTTTGCTTGCAAGCATGTT
Al_BA_grs_34451_197	GAAGGTGACCAAGTTCATGCTATTTTAACAGAGGCAAAACATTAAACAC	GAAGGTCGGAGTCAACGGATTAACTATTTTAACAGAGGCAAAACATTAAACAT	TATCAATGGAATCAGGAGAGAGAATCATTT
Al_BA_grs_46767_204	GAAGGTGACCAAGTTCATGCTATTTGAGAATATGGAAATTAAGCCAAGAC	GAAGGTCGGAGTCAACGGATTCATTTGAGAATATGGAAATTAAGCCAAGAT	CTTACCTTAACACCAGTTGACAAAAGCTA
Al_BA_grs_66329_305	GAAGGTGACCAAGTTCATGCTATTGCCACGGTTGCTTTTTCATTGC	GAAGGTCGGAGTCAACGGATTATTGCCACGGTTGCTTTTTCATTGT	CTTATTGCCACGAAATGATGTTCATTGGAA
Al_BA_grs_39022_147	GAAGGTGACCAAGTTCATGCTATTGAAGAACAAGACTATCTATTTAGTTGC	GAAGGTCGGAGTCAACGGATTAATATTGAAGAACAAGACTATCTATtTAGTTGT	GCAACTTAAATTGCAGGCATAAGTGAAGTA
Al_BA_grs_49490_162	GAAGGTGACCAAGTTCATGCTATTCTCGCCCCTGCTCCGG	GAAGGTCGGAGTCAACGGATTCTCGCCCCTGCTCCGA	GGGCGCTGAGTGAGGGGAAAT
Al_BA_grs_105835_262	GAAGGTGACCAAGTTCATGCTATTCCAATCATTCACTTAAATATAAAGTGAAC	GAAGGTCGGAGTCAACGGATTATTCCAATCATTCACTTAAATATAAAGTGAAT	tCCCAAGTTTTAGATTTATGATAGGTATAA
Al_BA_grs_59440_334	GAAGGTGACCAAGTTCATGCTATGTTATACCATGCAATTGTGCATC	GAAGGTCGGAGTCAACGGATTGCTATGTTATACCATGCAATTGTGCATT	TATGCAACAAGACAAAACAAGGTATGCCA
Al_BA_grs_106231_245	GAAGGTGACCAAGTTCATGCTATGTGAAATTGAATTTCATGCACAACTTAG	GAAGGTCGGAGTCAACGGATTGATGTGAAATTGAATTTCATGCACAACTTAA	GGCATGCTTGCTTTCTTTGATCCAATATA
Al_BA_grs_49269_122	GAAGGTGACCAAGTTCATGCTATGTAAAAGTGTTATGATATGGTTCTTGC	GAAGGTCGGAGTCAACGGATTCATATGTAAAAGTGTTATGATATGGTTCTTGT	TATATTATCACAGCCATCAATGAACAAGAT

Indicates robust primer sets used for

* genetic mapping

[^0]: contig 10844_F, AGTTTAACCCTTACCTCATCGAC

